当前位置:首页 » 半夜时分 » 为什么模型预测时间越长越好

为什么模型预测时间越长越好

发布时间: 2022-10-17 15:07:42

A. 时间跨度越长天气预报越不准,为什么会这样

这种现象不是天气预报越来越不准确,而是天气预报越来越准确,预报给用户的手段越来越丰富、越来越快。首先,我们应该认识到,天气预报是对未来天气现象的预测,既然是预测,就不可能100%准确。由于物理学中的测不准原理,在数学计算中有各种近似方法。因此,随着预测时间的延长,由数学模型计算的预测结果的准确性迅速降低。然而,随着时间的推移,我们离预测时间越来越近,计算结果也越来越准确。目前,我们的气象部门必须及时修改预报。

填补这一真空非常困难,气候模型必须准确描述天气预报与气候预报之间的“差距”"为填补这项差距,延长期内的天气预报可被视为传统天气预报与气候预报之间的"差距"。“填补这一空白非常困难”,准确描述气候模型的气候系统和气候有多困难。

B. 用IPTG诱导表达的时间是否越长越好,为什么

用IPTG诱导表达的时间不是越长越好,因为只有在特定的环境信号(加入IPTG)刺激下,目的基因才会被激活,之后才会产生大量的代谢表达产物,收集有较多表达量的菌体。

如果不用IPTG的话,大部分目的蛋白是不会表达的,有少部分可能会有极少量的表达,称之为泄漏表达。


科学研究:

IPTG常用于需要诱导β-半乳糖苷酶活性的克隆实验。它常与X-Gal或Bluo-Gal结合使用,用于重组细菌菌落的蓝白筛选,这些菌落可以诱导lac操纵子在大肠杆菌中的表达。IPTG与lacI阻遏蛋白结合并改变其构象而发挥作用,防止β-半乳糖苷酶编码基因lacZ的抑制。

C. VAR模型下,观测时间越长越好吗

当然是观测的时间越长越好对以后的发展多余挺好

D. 准稳态实验为什么不是时间越长数据越好

因为准稳态最大的优点,在于大大缩短测试周期
准稳态测试方法的最大优点,在于大大缩短测试周期,将以往稳态法常温下一个温度点的测试周期从48小时以上缩短到36小时内测试一条有效导热系数随温度的变化曲线。准稳态法是指在给定自变量的作用下,相应的响应信号并未达到完全稳定。人为规定在每一个自变量停留同样的时间,在时间到达前的瞬间记录相应的响应信号。
值得一提的是,准稳态有效导热系数测试技术是一种新型测试手段,这种测试技术是采用一维热流加热方式,被测试样在被加热到一定阶段后,通过试样的热流速度将达到一个缓慢变化状态,也就是准稳态状态。

E. 短期预测和长期预测的预测时间分别是多少 一般来说 短期预测和长期预测 哪种误差较大为什么急 急 急

短期是一年内 长期是5年以上 长期误差较大
以为市场等因素变化在长期内是不能完全确定的

F. 时间序列分析预测法优缺点

优点:可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。

缺点:在应用时间序列分析法进行市场预测时应注意市场现象未来发展变化规律和发展水平,不一定与其历史和现在的发展变化规律完全一致。间序列预测法因突出时间序列暂不考虑外界因素影响,因而存在着预测误差的缺陷,当遇到外界发生较大变化,往往会有较大偏差。

其基本特征:

1、趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不相等。

2、周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

3、随机性:个别为随机变动,整体呈统计规律。

4、综合性:实际变化情况是几种变动的叠加或组合。预测时设法过滤除去不规则变动,突出反映趋势性和周期性变动。

G. 您好,请问对于长期的预测,用什么模型准确率比较高

自我感觉哈。。。长期的预测应该用智能预测相对来说比较准确一点,如神经网络预测,二时间序列模型预测适合短期预报,时间稍微长一点就完全不准确,灰色模型预测也是。。

H. svm的模型越大,预测时间会不会变长

SVM理论是在统计学习理论的基础上发展起来的,由于统计学习理论和SVM方法对有限样本情况下模式识别中的一些根本性的问题进行了系统的理论研究,很大程度上解决了以往的机器学习中模型的选择与过学习问题、非线性和维数灾难、局部极小点问题等。应用SVM进行回归预测的步骤具体如下:
1)实验规模的选取,决定训练集的数量、测试集的数量,以及两者的比例;2)预测参数的选取;3)对实验数据进行规范化处理;4)核函数的确定;5)核函数参数的确定。其中参数的选择对SVM的性能来说是十分重要的,对于本文的核函数使用RBF核函数,对于RBF核函数,SVM参数包括折衷参数C、核宽度C和不敏感参数E。目前SVM方法的参数、核函数的参数选择,在国际上都还没有形成统一的模式,也就是说最优SVM算法参数选择还只能是凭借经验、实验对比、大范围的搜寻和交叉检验等进行寻优。实际应用中经常为了方便,主观设定一个较小的正数作为E的取值,本文首先在C和C的一定范围内取多个值来训练,定下各个参数取值的大概范围,然后利用留一法来具体选定参数值
股价时间序列的SVM模型最高阶确定
股价数据是一个时间序列,从时间序列的特征分析得知,股价具有时滞、后效性,当天的股价不仅还与当天各种特征有关,还与前几天的股价及特征相关,所以有必要把前几天的股价和特征作为自变量来考虑。最高阶确定基本原理是从低阶开始对系统建模,然后逐步增加模型的阶数,并用F检验对这些模型进行判别来确定最高阶n,这样才能更客观反映股票价格的时滞特性。具体操作步骤如下:假定一多输入单输出回归模型有N个样本、一个因变量(股价)、m- 1个自变量(特征),由低阶到高阶递推地采用SVM模型去拟合系统(这儿的拓阶就是把昨天股价当做自变量,对特征同时拓阶),并依次对相邻两个SVM模型采用F检验的方法判断模型阶次增加是否合适[ 7]。对相邻两模型SVM ( n)和SVM ( n+ 1)而言,有统计量Fi为:Fi=QSVR (n)- QSVR( n+1)QSVR (n)1N - m n - (m -1)mi =1,2,,, n(1)它服从自由度分别为m和(N - m n - (m -1) )的F分布,其中QSVR (n)和QSVR( n+1)分别为SVR ( n)和QSVR( n+1)的剩余离差平方和,若Fi< F(?,m, N-m n- (m-1) ),则SVM (n )模型是合适的;反之,继续拓展阶数。
前向浮动特征筛选
经过上述模型最高阶数的确定后,虽然确定了阶数为n的SVM模型,即n个特征,但其中某些特征对模型的预测精度有不利影响,本文采用基于SVM和留一法的前向浮动特征特征筛选算法选择对提高预测精度有利影响的特征。令B= {xj: j=1,2,,, k}表示特征全集, Am表示由B中的m个特征组成的特征子集,评价函数MSE (Am)和MSE (Ai) i =1,2,,, m -1的值都已知。本文采用的前向浮动特征筛选算法如下[9]:1)设置m =0, A0为空集,利用前向特征筛选方法寻找两个特征组成特征子集Am(m =2);2)使用前向特征筛选方法从未选择的特征子集(B -Am)中选择特征xm +1,得到子集Am+1;3)如果迭代次数达到预设值则退出,否则执行4);4)选择特征子集Am+1中最不重要的特征。如果xm+1是最不重要的特征即对任意jXm +1, J (Am +1- xm+1)FJ(Am +1- xj)成立,那么令m = m +1,返回2) (由于xm+1是最不重要的特征,所以无需从Am中排除原有的特征);如果最不重要的特征是xr( r =1,2,,, m )且MSE (Am+1- xr) < MSE (Am)成立,排除xr,令A'm= Am+1- xr;如果m =2,设置Am= A'm,J (Am) = J (A'm), ,返回2),否则转向步骤5);5)在特征子集A'm中寻找最不重要的特征xs,如果MSE (A'm- xs)EM SE (Am-1),那么设置Am= A'm, MSE (Am)= MSE (A'm),返回2);如果M SE (A'm- xs) < M SE (Am -1),那么A'm从中排除xs,得到A'm-1= Am- xs,令m = m -1;如果m =2,设置Am= A'm, MSE (Am) = MSE (A'm)返回2),否则转向5)。最后选择的特征用于后续建模预测。
预测评价指标及参比模型
训练结果评估阶段是对训练得出的模型推广能力进行验证,所谓推广能力是指经训练后的模型对未在训练集中出现的样本做出正确反应的能力。为了评价本文模型的优劣,选择BPANN、多变量自回归时间序列模型( CAR)和没有进行拓阶和特征筛选的SVM作为参比模型。采用均方误差(mean squared error, MSE)和平均绝对误差百分率(mean ab-solute percentage error, MAPE)作为评价指标。MSE和MAP定义如下:M SE=E(yi- y^i)2n( 2)MAPE=E| yi- y^i| /yin( 3)其中yi为真值, y^i为预测值, n为预测样本数。如果得出M SE, MAPE结果较小,则说明该评估模型的推广能力强,或泛化能力强,否则就说明其推广能力较差

I. 为什么做回归预测分析,日度数据优于周度数据优于月度数据,为什么时间区间越短越好呢

时间区间越短,相应的样本量就越丰富,整个样本包含的信息就越丰富。

J. 预测模型建立

松散含水层含水量预测模型的建立,主要是将预测松散含水层含水量问题转化为利用支持向量机求解的数学模型,主要包括如下4个步骤:

1)选取训练集T={(x1,y1),…,(xl,yl)}∈(χ×y)l

2)选择适当的核函数K(x,x'),如线性核函数、径向基核函数、多项式核函数和Sigmoid核函数。

3)确定支持向量机中的参数,如C,ε,γ等。

4)建立模型。

(一)训练集的选取

1.预测基本输入特征量

选取合适的训练集,对于建立松散含水层含水量预测模型是非常重要的,本课题对预测模型输入特征量的选取遵循以下原则:

1)现有物探仪器设备可测、或可转换参数,具有实用性和可观测性。

2)要与所研究地下含水层结构的综合物探方法相配套,充分挖掘所获观测数据的信息资源。

3)优化组合,兼顾所利用的输入特征量间的互补性,避免或减少冗余性。

4)保障预测模型具有广泛的推广能力。

建模时要把所有的数据分为训练集和测试集,根据训练集,求出决策函数,而用测试集测试所得决策函数的准确率。那么选择一个合适的训练集,第一要满足训练集中的样本点数量不能过多,也不能太少;第二训练集中所含特征向量不能太少,如果太少则不能够反映实际情况,影响分类或者回归的准确性,但也不能太多,否则会增加计算难度,甚至影响训练速度和时间。除了样本点多少的选择以外,还要在数据中不能选择过多的属性。属性选择要达到以下3个目的:首先是确认哪些属性与预测输出特征量相关的特性;其次是尽量降低输入空间维数,缩小求解问题的规模;最后是提高准确率,得到更好的决策函数。

基于上述原则,将支持向量机预测模型的预测输入基本特征量选定为:反演电阻率值ρ、反演含水层厚度H,半衰时Th,衰减度D,视极化率ηs,纵波速度v等地面物探观测参数作为基本输入特征量讨论。

为了验证上述输入特征量选择原则的正确性,选择了石家庄市西马庄水源地现有电测深资料与单孔单位涌水量资料并进行了秩相关性分析,原始数据见表5-1所示。分析结果如表5-2所示。

表5-1 西马庄原始数据

表5-2 西马庄电性参数与涌水量相关分析

2.综合性参数的引入

鉴于第四纪含水层一般呈高阻性,在电测深反演解释过程中易产生Th等值现象的解释误差。依据含水层的富水性对应于一定的电阻率值,而单孔单位涌水量既与含水层富水性有关,又与其厚度有关。为了尽可能消除因等值现象导致解释所产生的误差,又能使输入特征量与预测量有更为密切的相关性,使预测模型具有良好的推广能力,对此,将电测深反演后的含水层电阻率与其层厚度相乘作为一个输入特征量T',该特征量T'与含水层单孔单位涌水量相关分析结果表明,二者有更为密切的相关性,见表5-3所示。

表5-3 综合参数与涌水量相关分析

考虑到不同的地区地下水所含矿化度的不同,因其孔隙水的导电性不同,将会导致同类富水层电阻率有较大差别。为了消除孔隙水的导电性对预测精度的影响,突出含水层有效孔隙度特征,基于ρ=αΦ-ms-nρw式,引入了相对综合因子参数T″,其表达式为

含水层含水量预测综合物探技术

式中:ρf为孔隙流体的电阻率;ρt为岩石的电阻率;H为含水层厚度。

从而将原基本输入特征量ρ和H组合为一个输入特征量T″。

3.激发比的引入

考虑到激发比可以放大激电异常,对第四系含水层有更为灵敏的反应。因此将激电模型里的极化率、衰减度参量用激发比参量代替,其表达式为J=ηsD。由表5-4和表5-5可知,激发比的引入,改善了模型预测精度。

表5-4 未引入激发比模型预测结果

表5-5 引入激发比模型预测结果

4.输入特征量的归一化

由于各输入特征量的量度差异较大,在用支持向量回归机进行建模训练和使用时,有必要对输入特征量进行归一化。归一化是指将属性数据按比例缩放,使之落入一个小的特定区域,如[-1,1]或[0,1]范围内。

归一化可以帮助防止具有较大初始值域的属性与具有较小初始值域的属性相比,权重差距过大。本次所建模型采用最小-最大规范化方法:将输入特征量归一化到[0,1]范围内。归一化公式为

含水层含水量预测综合物探技术

式中:x为某个输入参数对应的值;xmin和xmax分别为该项特征量的设置最小值和最大值;xs为该输入参数的归一化值。

5.预测输入特征量的优选

在基本预测输入特征量归一化处理的基础上,需要进一步研究特征量组合结构的优化性问题,即确定预测模型最佳输入特征量的数量和成分。

通过电测深找水实践证明:

第四纪地下含水层结构对应特定的电测深异常特征,所获取的地电参数与单孔涌水量均存在着一定的对应关系,但深入研究还表明:作为预测输入量而言,每一参量与单孔涌水量间存在着不同的相关性,输入量相互之间可能还存在着冗余成分,为提高预测模型的预测精度和模型运算速度,探讨上述地电参量与地下水单孔涌水量的相关性和输入特征量的最佳组合问题,揭示地电参数与地下含水层含水量的内在关联是十分必要的,也是确定预测模型输入特征向量的基础。

鉴于地电参数与地下含水层含水量间不存在明确的函数关系,在优化分析过程中,以石家庄市西马庄水源地的已知8眼井孔的资料为基础,将现有的已知特征量参数:T″,Th,D,ηs及激发比J作为分析对象,利用高斯径向基核函数,C=1024,ε=0.5,γ=1.0和ε-SVR模型进行7+1循环式训练-预测方式。其分析结果如表5-6所示。

由表5-6所列预测精度可得到以下结论:

表5-6 特征量的优化分析表 单位:%

第一,随着特征数量的增大,其预测精度得到提高,四个特征量预测精度最好;

第二,若采用三个特征量时,其中的T″,Th,D组合最佳,其次为T″,D,ηs。以上结论对建模时输入特征量的优化筛选提供了重要的参考依据。

6.预测模型输入特征量的确定

基于上述分析,针对研究对象的尺度及精度要求,建立了4种预测模式。对于不同的预测模型,分别确定了其输入特征量。

模型一:输入特征量为含水层的反演电阻率ρ、隔水层的反演电阻率ρ、含水层厚度h、含水层层数n和井孔孔径。该模型主要用于对精度要求不高的区域水文地质调查。

模型二:输入特征量为含水层的反演电阻率ρ、隔水层的反演电阻率ρ、视极化率ηs、含水层的半衰时Th、含水层厚度h、含水层层数n和井孔孔径。该模型主要用于专门性水文地质调查。

模型三:输入特征量为含水层的反演电阻率ρ、隔水层的反演电阻率ρ、视极化率ηs、半衰时Th、衰减度D、含水层厚度h、含水层层数n和井孔孔径。该模型主要用于对精度要求较高但探测深度要求不高的地下水源评价与开发工作。

模型四:输入特征量为含水层的反演电阻率ρ、隔水层的反演电阻率ρ、视极化率ηs、纵波波速v、含水层厚度h、含水层层数n和井孔孔径。该模型主要用于对精度要求较高,探测深度较深的地下水源评价与开发工作。

(二)核函数的选择

在建立预测模型过程中,需要选择函数K(·,·),即选择一个映射Φ(·),把x所在的输入空间χ映射到另一个空间H。H是一个Hilbert空间,即可以是有限维空间也可以是无穷维空间。因此核函数方法的核心内容就是采用非线性变换Φ将n维矢量空间中的随机矢量x映射到高维特征空间,在高维特征空间中设相应的线性学习算法,由于其中各坐标分量间的相互作用只限于内积,因此不需要知道非线性变换Φ的具体形式,只要利用满足Mercer条件的核函数替换线性算法中的内积,就能得到原输入空间中对应的非线性算法。

支持向量回归机中的核函数对于预测模型的推广能力产生直接的影响,在选取核函数时,通常采用的方法有:一是利用专家的先验知识预先给定核函数;二是采用Cross-Validation方法,即在核函数选取时,分别试用不同的核函数,归纳预测误差最小的核函数就是最好的核函数。在本课题中我们采用了第二种方法进行核函数的选择。

为使确定的核函数具有最佳的预测效果,首先要对相应的核数的参数进行优化筛选。由(5-20),(5-22),(5-24)式可见,径向基核函数需要确定1个核参数,即系数γ;Sigmoid核函数需要确定2个参数,分别为:系数γ和常数r;多项式核函数需要确定3个参数,分别为:阶数d、系数γ和常数r。

在筛选过程中,将石家庄市西马庄水源地的井旁电测深成果和抽水试验数据作为研究基础,具体数据详见表5-1所示。

将其划分为两个子集,即一个训练集和一个预测验证集。由此对上述每一种核函数利用已确定的训练集进行建模参数优化筛选。具体方法为:对于径向基函数采取了交叉验证和网格搜索的方法,多项式核函数和Sigmoid核函数采用了试凑法。

试验一:径向基核函数交叉验证

对石家庄西马庄水源地8眼井作试验数据,选出7个作为训练样本,一个不参加训练的样本。再将选出的7个训练样本随机分为3组,选择其中两组进行训练,另外一组作为验证,这样一个接一个,进行3次。每次验证时,尝试所有的参数对,计算其交叉校验的平均性能MSE,最后以模型在3次验证数据上的性能平均值作为这一学习参数下的模型性能,然后循环8次,从而确定最佳参数值范围。确定的搜索范围分别为C(2-10,215),ε(2-10,23),γ(2-10,210)。为了增加搜索速度,我们步长选择的是2的指数倍。最终确定参数C=1024,ε=0.5,γ=1。

试验二:多项式核函数试凑法

借鉴试验一的分析结果,选择参数C=1024,ε=0.5。在选取核参数之前,我们需要对多项式核的阶数d做出限定,选择的阶数不易过大,如阶数太大,不仅增加了学习模型的复杂性,易出现“过拟合”现象,导致SVM的推广性能降低。因此,规定d的取值不超过4。另外对γ和r做了初步筛选,圈定了其范围分别为:γ∈[1,4];r∈[0.1,1]。然后采用阶梯式搜索分别找出最优的阶数d、系数γ和常数r;

首先进行阶数d的选择,设定参数γ=1,r=0.2;从8眼井中选出7个作为训练样本,d依次选择1、2、3、4进行训练,预测那个没有参加训练的样本,循环8次然后将预测结果进行对比。本文采用两个误差指标来衡量模型的预测效果:均方误差(MSE)和平均绝对百分比误差(MAPE),其表达式分别为

含水层含水量预测综合物探技术

式中: 为预测值;xi为实测值;N为试验次数,这里N取8。

由表5-7可以看出:当d=3或d=4时,预测精度相近,但考虑到阶数越大,学习模型的复杂性越大,因此选取d=3最佳参数。

表5-7 不同阶数多项式核函数对预测结果影响统计表

然后进行系数γ选择,设定参数d=3,r=0.2;γ依次选择1、2、3、4进行训练,然后将预测结果进行对比,可知γ=1为最佳参数(表5-8)。

表5-8 不同γ多项式核函数对预测结果影响统计表

最后进行常数r的选择,设定参数d=3,γ=1.0;r依次选择0.2、0.4、0.6、0.8和1进行训练,然后将预测结果进行对比,可知r=0.8为最佳参数(表5-9)。

表5-9 不同r多项式核函数对预测结果影响统计表

最终确定参数d=3,γ=1,r=0。

试验三:Sigmoid核函数试凑法

选取石家庄西马庄水源地8眼井作试验数据,仍借鉴试验一的分析结果,选择参数C=1024,ε=0.5。

对γ和r做了初步筛选后,确定γ为0.1;圈定r∈[0.01,1]。下边对参数r进行精细选择,设定r值分别为:0.01、0.1、0.2、0.4、0.8,从8眼井中选出7个作为训练样本,预测样本不参加训练集,经过8次循环,通过对预测结果的对比,从而确定r=0.01~0.1时预测效果最好。分析结果如表5-10所示。

表5-10 不同rSigmoid核函数对预测结果影响统计表

核函数的选择通常采用Cross-Validation法,即在核函数选取时,分别试用不同的核函数,归纳预测误差最小的核函数就是最好的核函数。

我们将石家庄西马庄8眼井的资料与北京潮白河水源地7眼井的资料组合建立新的建模集,从中任意选出14个作为训练集样本,另外1个样本组成预测集,这样进行了8组试验,通过图5-3我们看到基于RBF核函数的预测模型预测精度最高。因此我们认为利用RBF核函数建立的含水层含水量预测模型预测效果最佳。

图5-3 三种核函数预测精度对比

(三)参数确定

采用径向基核函数所建立的模型需要确定的参数共有三个,分别为核函数参数γ,惩罚系数C和松弛变量ε。

惩罚因子C为正常数,惩罚因子C决定了对超出误差ε的样本惩罚程度。从结构风险的角度考虑,C值取得过大,问题倾向于经验最小,忽略对结构复杂程度的考虑;反之则更多地考虑了问题的复杂程度,忽略了经验数据的作用。因此可以说,C是支持向量机回归和泛化能力的平衡参数。惩罚因子C取不同的常数值,对结果有不同的影响。

由表5-11可知当C值取1024和2048时预测精度相同,说明当C大于一定值时,其变化对分析结果产生的影响变小。

表5-11 不同C值对预测结果影响统计表

通过对比试验,最终取值C=1024,ε=0.5,γ=1.0。

(四)模型建立

构造并求解最优化问题

含水层含水量预测综合物探技术

得到最优解 每个支持值β=(a*i-ai)。

构造决策函数

含水层含水量预测综合物探技术

其中

将所求得的核函数系数、β值及b值带入5-44式,即为ε-SVR预测模型。

热点内容
为什么都说小米手机返修率高 发布:2025-02-02 09:39:00 浏览:550
为什么做事能力不好 发布:2025-02-02 09:37:42 浏览:741
为什么杂牌led灯那么便宜 发布:2025-02-02 09:33:28 浏览:570
华为荣耀手机为什么微信视频来电无提示 发布:2025-02-02 09:33:28 浏览:477
配速大于每公里跑的时间是为什么 发布:2025-02-02 09:29:09 浏览:129
苹果解锁开关为什么点不开 发布:2025-02-02 09:24:48 浏览:235
冬天晚上为什么看不见北斗星 发布:2025-02-02 09:21:37 浏览:791
6岁男孩为什么晚上咳嗽厉害 发布:2025-02-02 09:09:07 浏览:30
天景山小区房价为什么便宜 发布:2025-02-02 08:55:00 浏览:212
抖音里为什么找不到自己 发布:2025-02-02 08:44:49 浏览:944