为什么研究时间序列
⑴ 什么叫做时间序列
时间序列法是一种定量预测方法,亦称简单外延方法。
在统计学中作为一种常用的预测手段被广泛应用。时间序列通常有以下三种方法:
1.方法一是把一个时间序列的数值变动,分解为几个组成部分,通常分为:
(1)倾向变动,亦称长期趋势变动T;
(2)循环变动,亦称周期变动C;
(3)季节变动,即每年有规则地反复进行变动S;
(4)不规则变动,亦称随机变动I等。然后再把这四个组成部分综合在一起,得出预测结果。
2.方法二是把预测对象、预测目标和对预测的影响因素都看成为具有时序的,为时间的函数,而时间序列法就是研究预测对象自身变化过程及发展趋势。
3.方法三是根据预测对象与影响因素之间的因果关系及其影响程度来推算未来。与目标的相关因素很多,只能选择那些因果关系较强的为预测影响的因素。
时间序列分析在第二次世界大战前应用于经济预测。二次大战中和战后,在军事科学、空间科学、气象预报和工业自动化等部门的应用更加广泛。
⑵ 研究时间序列的分形特性的意义何在
可以查看我们关注的指标是否在预定的范围内运行,如:
是否存在某种特殊的趋势
是否有随机性,总之要看具体的图才知道运行趋势是否满足需求
⑶ 多元回归时间序列和多因素时间序列的关系
多元回归时间序列是指ARIMA模型下面研究的时间序列的回归问题。
多因素时间序列一般是说同时考虑多个外生变量和内生变量的滞后项的问题,
而ARIMA就是其中用于进行回归的一种方法,而且是最一般的方法。
ARIMA模型?http://wenku..com/view/841fcb8583d049649b66580b.html,这里有课件,但是如果你没有接触过时间序列的知识的话,可能很难看懂。
ARIMA模型: Autoregressive Integrated Moving Average。主要的步骤是的几种检验方法(如 用自相关函数ACF和偏自相关函数PACF分析拖尾和截尾情况 或者 用DF检验协整关系)进行判断,确定适当的滞后变量个数和滞后扰动项个数,以得到最好的回归效果。然后根据变量个数分别调整数据,再进行回归计算。
当然ARIMA模型基本如果不简化为ARMA模型(不同时考虑滞后变量和扰动项)的话,是没有办法用手算的。如果想要应用操作的话,可以用SPSS解决,这个软件不需要编程的功底。
一两句话还是不能说明白。建议还是参照一本书,看看书中的例题就很容易明白。推荐恩德斯的《应用计量经济学:时间序列分析》,里面废话少。
⑷ 时间序列是研究什么的
时间序列分析
在生产和科学研究中,对某一个或一组变量x(t)进行观察测量,将在一系列时刻t1, t2, …, tn (t为自变量且t1<t2<…< tn ) 所得到的离散数字组成序列集合x(t1), x(t2), …, x(tn),我们称之为时间序列,这种有时间意义的序列也称为动态数据。这样的动态数据在自然、经济及社会等领域都是很常见的。如在一定生态条件下,动植物种群数量逐月或逐年的消长过程、某证券交易所每天的收盘指数、每个月的GNP、失业人数或物价指数等等。
时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。它一般采用曲线拟合和参数估计方法(如非线性最小二乘法)进行。时间序列分析常用在国民经济宏观控制、区域综合发展规划、企业经营管理、市场潜量预测、气象预报、水文预报、地震前兆预报、农作物病虫灾害预报、环境污染控制、生态平衡、天文学和海洋学等方面。
时间序列建模基本步骤是:①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。②根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARMA模型等来进行拟合。当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。
时间序列分析主要用于:①系统描述。根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。②系统分析。当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。③预测未来。一般用ARMA模型拟合时间序列,预测该时间序列未来值。④决策和控制。根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。
DPS数据处理系统提供给用户一套较完整的时间序列建模分析、进行预测预报的工具,包括平稳无趋势时间序列分析预测、有趋势的时间序列预测、具季节性周期的时间序列预测以及差分自回归滑动平均(ARIMA)建模分析、预测等时间序列分析和建模技术。
⑸ 什么是时间序列
时间序列法是一种定量预测方法,亦称简单外延方法。在统计学中作为一种常用的预测手段被广泛应用。时间序列通常有以下三种方法:
1.方法一是把一个时间序列的数值变动,分解为几个组成部分,通常分为:
(1)倾向变动,亦称长期趋势变动T;
(2)循环变动,亦称周期变动C;
(3)季节变动,即每年有规则地反复进行变动S;
(4)不规则变动,亦称随机变动I等。然后再把这四个组成部分综合在一起,得出预测结果。
2.方法二是把预测对象、预测目标和对预测的影响因素都看成为具有时序的,为时间的函数,而时间序列法就是研究预测对象自身变化过程及发展趋势。
3.方法三是根据预测对象与影响因素之间的因果关系及其影响程度来推算未来。与目标的相关因素很多,只能选择那些因果关系较强的为预测影响的因素。
时间序列分析在第二次世界大战前应用于经济预测。二次大战中和战后,在军事科学、空间科学、气象预报和工业自动化等部门的应用更加广泛。
⑹ 为什么时间序列做回归时只需协整检验就够了
原因:只有同阶单整,变量之间才有共同的增长趋势,才能同涨同落。时间序列的协整检验:先做回归,后做协整检验。
⑺ 研究时间序列之间的关系用什么模型
应该用协整模型
⑻ 时间序列分析难不难
一,什么是时间序列?
时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值
时间序列分析并不是关于时间的回归,它主要是研究自身的变化规律的
二,时间序列的类别
1,纯随机序列
又称为白噪声序列,序列的各项之间没有任何相关关系,完全是无序的随机波动,这样的序列没有任何信息可以提取
2,平稳非白噪声序列
他的均值和方差是常数,对于这样的序列,现在已经有成熟的建模方法,通常是建立一个线性模型来拟合该序列的发展,借此提出有用的信息,ARMA 模型是最常用的平稳序列拟合模型(线性拟合并不是和时间的拟合,而是和本身的拟合)
3,非平稳非白噪声序列
对于非平稳序列,他的方差和均值不稳定,一般是先将其转换成平稳序列,这样就可以使用平稳时间序列的方法来分析,如ARMA模型;如果一个时间序列可以经差分后具有平稳性,则该序列是差分平稳序列,可以使用ARIMA模型
三:平稳性检验
1,为何要求序列平稳?
我们知道序列平稳性是进行时间序列分析的前提条件,很多人都会有疑问,为什么要满足平稳性的要求呢?
在统计学中,每一个问题我们都要有一个初始的基本假设,就像一些假设检验就要求数据符合正态分布,一个回归方程,要求Xi完全独立不相关,而且误差要符合均值为0的正态分布,而在时间序列分析上,最重要的假设前提就是序列的平稳性(来自一个知乎的牛叉解读),所以平稳的基本思想是:时间序列行为不能随着时间改变而改变,
2,平稳时间序列的定义:
平稳有强平稳和弱平稳之分,这里我们主要说弱平稳。ps:强平稳条件限制太强,难以验证
对于随机变量 X ,可以计算期均值也就是数学期望 μ ,方差 σ^2,对于两个随机变量X 和 Y,可以计算 X,Y的协方差cov(X,Y)=E[(X- μx)(Y-μy)]和相关系数ρ(X,Y)=cov(X,Y)/σXσY,他们度量了两个不同事件之间的相互影响程度。
对时间序列{Xt,t∈T},任意时刻的序列值Xt都是一个随机变量,每一个随机变量都会有均值和方差,任意取 t,s∈T,则他的自相关协方差函数 γ(t,s) = E[(X- μt)(Y-μs)] 和自相关系数ρ(t,s) = cov(Xt,Xs)/σtσs,之所以是自协方差函数和自相关系数,就是因为他们衡量的是同一件事在两个不同时期(时刻 t 和时刻 s )之间的相关程度,简单讲就是度量自己过去的行为对自己现在的影响!
⑼ 时间序列 是什么意思啊
同学你好,很高兴为您解答!
时间序列
以时间为顺序的观测结果序列。
CMA认证能帮助持证者职业发展,保持高水准的职业道德要求,站在财务战略咨询师的角度进行企业分析决策,推动企业业绩发展,并在企业战略决策过程中担任重要的角色。
希望我的回答能帮助您解决问题,如您满意,请采纳为最佳答案哟。
再次感谢您的提问,更多财会问题欢迎提交给高顿企业知道。
高顿祝您生活愉快!