搅拌子直径过大为什么会不好
1. 磁力搅拌的时候磁力搅拌子的大小会影响转速吗
磁力搅银亩拌的时候磁力搅拌子伏州的大小会影响转速的。一般转子都是固定大小的。转锋厅森子越小转速越快 磁力搅拌相关问题可以看 巩义科海仪器
2. 搅拌水泥浆时为何浆料不匀,底层浆稀,上层浆稠。而且还有许多结块,大的直径有十几厘米,小的也有鸡蛋大。
要是你材料没问题那么就是搅拌器的问题,需要根据粘度来算转速,多试试不同的转速吧。
3. 石子直径大小与混凝土刚搅拌出来的重量有关系吗
没游岁关系的
现在混凝土生产早启都是传感器计量,以重量方式称量原料,无论物料外形如何只是称量设定陆磨如的重量。
如果是大石子,可能会卡住下料口,造成下料冲量过大,使最终混凝土总重量增加。
4. 螺旋桨式搅拌机
在非金属矿产加工生产中,也常用螺旋桨式搅拌机来搅拌泥浆,使泥浆中各组分混合均匀,固体颗粒不致沉淀,产生较好的悬浮状态。此外,也用于在水中松解泥料以制备均质泥浆。螺旋桨式搅拌机结构简单,使用方便,故在非金属矿产加工中得到广泛的应用。
一、构造和工作原理
螺旋桨式搅拌机的构造如图4-8所示。它主要由垂直安置的主轴3和三叶螺旋桨1以及贮浆池2组成。主轴由电动机4经减速器5带动旋转。电动机和减速器安装在架于钢筋混凝土制的贮浆池的横梁7上,螺旋桨用键和螺母固定于主轴末端。
当螺旋桨在液态泥浆中转动时,迫使泥浆产生激烈的运动,其中除了有切向和径向运动外,还有速度较大的轴向运动,这种轴向运动能促使泥浆强烈对流循环,因而泥浆可得到有效的混合和搅拌。
图4-8螺旋桨式搅拌机
1-螺旋桨;2-贮浆池;3-立轴;4-电动机;5-减速器;6-机座;7-横梁
二、螺旋桨
螺旋桨是螺旋搅拌机的运动工作件。常用三片桨片,单层旋桨。
螺旋桨由叶片和轴套组成,其叶片沿圆周等分排列,其结构如图4-9所示。
桨叶与轴套通常是铸成整体的,桨叶的前面是工作面(又称压力面),为斜螺旋面的一部分;桨叶的后面是非工作面,其与轴线为中心的圆柱面的相交线一般是二次抛物线形状。零件图中除了必要的投影视图外,为了反映叶片复杂的剖面图,称叶片型线图。有关桨片设计可参见有关资料介绍。
螺旋桨紧固于立轴上,除用平键联接外,在轴端还用铜质盖形螺母上紧。具有右旋螺纹的盖形螺母随立轴和螺旋桨一同在料喊春浆中旋转。为了使料浆作用于螺母上阻力矩与螺母拧紧方向相同,以防螺母自行松脱,立轴应灶耐作顺时方向(从立轴顶端朝下观察的转向)旋转,那么螺旋桨要把料浆推向下方,桨叶螺旋面的旋向应当是左旋。
图4-9螺旋桨结构投影图
三、搅拌池
大型搅拌池多为薄地式混凝土筑制,小型的可用板材制成。对大型浆池,为减少料浆随螺旋桨整体旋转,提高桨叶与料浆间的相对运动速度而有较好的搅拌效果,一般浆池的横截面为正多边形(多用八边形),浆池的直径对横截面为正多边形的搅拌池来说,是指正多边形的内切圆直径。
搅拌池的直径要合理选择,直径过大,搅拌不容易均匀,局部地区会搅拌不到而成为死角;直径过小,则搅拌池容积太小,不能充分发挥搅拌机的作用,经济上不合理,通常搅拌池的直径可按下式选择:
非金属矿产加工机械设备
式中D——搅拌池直径;
d——螺旋桨直径。
搅拌池的容积计算如下:
按搅拌比Vp/V0=10~13,计算池中料浆的体积V0,则搅拌池的容积
。
式中Vp——搅拌池的容积;
K——搅拌池的有效利用系数,可取K=0.85。
由已知的搅拌池容积和直径,可计算搅拌池的深度,或者更为简单而实用的是用下面的经验公式确定搅拌池的深度。
非金属矿产加工机械设备
式中H——搅拌池的深度;
D——搅拌池的直径。
由于螺旋桨式搅拌机搅拌时料浆的运动特性,在螺旋桨的下方,流线比较集中,而在搅拌池底部附近的四周,料浆的流速很小,往往成为搅拌不到的死角。为了避免这种情况的发生,搅拌池底部通常做成棱锥形的表面。底面直径为搅拌池直径的1/2,半锥角为45°,如图4-10所示。
确定搅拌池的深度时,还要结合搅拌轴伸长度一并考虑,不要使搅郑辩耐拌机主轴悬臂太长,以免扭断或由于螺旋桨受力不平衡时,造成侧向弯曲,失去稳定性,并使轴承容易损坏。
图4-10搅拌池结构图
1-瓷砖;2-地脚螺拴预留孔;3-人孔
四、立轴
立轴的材料通常采用45号钢,为了防止铁质对料浆的污染,轴伸入料浆的那一段应当采取防腐蚀措施。
1.轴的强度计算
工作时,主轴承受扭转和弯曲的组合作用,但是,为了简化计算,工程中往往假定立轴仅仅承受扭矩的作用,然后用增加安全系数,即降低材料的许用应力来弥补由于忽略弯曲作用所造成的误差。
对于实心轴,轴的直径
非金属矿产加工机械设备
式中ds——轴的直径(xm);
N——轴传递的功率(kW);
n——轴的转速(r/min);
A——与轴的材料和载荷性质有关的系数,一般可按表4-6查取。
表4-6轴实用材料的许用应力[T]及A值
表4-7选取τk=310kgf/cm2时各轴的直径、转速、功率关系表
注:在粗线以上范围的建议选用表4-9更为合适。若τk=310kgf/cm2时,需根据换算系数计算后取两表的较大值。
以45号钢为基础,取τ=310kgf/cm2(即A=10.51)时,各轴的直径、转速、功率间的关系见表4-7。
对于空心轴,轴的直径
非金属矿产加工机械设备
式中Ds——空心轴的外径(cm);
α——轴的内径与外径之比;
其余符号的意义和单位同前。
2.轴的刚度计算
为了防止转轴产生过大的扭转变形,以免在运转中引起震动造成轴封失效,应该将轴的扭转变形限制在一个允许的范围内,这是设计中的扭转刚度条件,为此,搅拌轴要进行刚度计算。
对于实心轴,轴的直径
非金属矿产加工机械设备
式中d——轴的直径(cm);
N——轴传递的功率(kW);
n——轴的转速(r/min);
B——与扭转变形的扭转角有关的系数。对于剪切弹性模数G0=8.1×105kgf/㎝2,钢的B值见表4-8。
表4-8B系数(G0=8.1×105kgf/cm2时)
为了使用方便以G0=8.1×105kgf/cm2、φ=1/2°为条件,根据
对于空心轴,表4-7或4-9要结合4-10进行选取。
必须指出,在选取轴径时应同时满足刚度和强度计算两个条件。一般按刚度条件计算的轴径较之强度条件计算者为大,所以通常对搅拌轴来说,主要以刚度条件确定轴径。如果刚度条件计算的结果较之强度条件计算结果相差较大时,可考虑改变轴的材质,即选用强度较差的材料。但仍然要满足强度条件要求。当转速较低功率又较大时,对强度条件是不可忽视的。
确定轴的直径时,还必须考虑轴上开有键槽或孔会引起轴的局部削弱,直径因而应适当增大,按照一般经验,轴上开有一个键槽或浅孔时,直径应增大4%~5%。如果在同一横截面位置开有两个键槽或浅孔,则直径应增大7%~10%。此外,轴的直径还应增加2~4mm作为腐蚀富裕度。
表4-9选取φ=1/2°,G0=810×105kgf/cm2时轴的直径、转速、功率关系表
注:在粗线以下范围,建议选用表4-7更为合适。若φ≠1/2°时,需根据换算系数计算后取两表的较大值。
表4-10空心轴换算值b0
注:空心轴查表时,须将实际传动功率除以b0得N换,再查表4-7或4-9。
立轴是悬伸到搅拌池中进行搅拌操作的,支承条件较差,常常由于侧向外力的作用而造成弯曲,弯曲的结果使离心力增大,从而又进一步增加弯曲的程度,最后使轴和轴承完全破坏。为了防止这种情况发生,在设计中应尽可能增大立轴轴承之间的距离和缩短悬臂的长度,并应对螺旋桨的静平衡精度提出一定的要求。
在一般情况下,立轴轴承之间的距离B和悬臂长度L可用下面的公式验算。
L/B≠4~5(4-11)
L/ds≤40~50(4-12)
立轴的不直度允许差一般取为0.1/1000。
螺旋搅拌机结构简单,操作容易,搅拌作用强烈,效果较好;但磨损较快。使用时要注意不要让搅拌机空转,即搅拌池中没有料浆时不要开动搅拌机。
图4-11搅拌轴的支承
五、主要参数的确定
1.转速n
螺旋桨的转速太低时,操作强度下降,搅拌效果不好;转速太高时,功率消耗和作用在桨叶上的力都急剧增大。桨叶不能做得过分笨重。根据实际使用的数据,螺旋桨的转速
非金属矿产加工机械设备
式中n——螺旋桨的转速(r/min);
d——螺旋桨的直径(m)。
实际上用上式计算的螺旋桨转速往往是偏高的,且供设计和使用时参考。选定螺旋桨转速时,应根据使用要求确定,例如用于松解泥料以制备均质泥浆时,需要有比较强烈的冲刷和碰击作用,应当采用较高的转速;如用于搅拌泥浆使之保持均匀,则可使用较低的转速。
2.功率N
搅拌桨所消耗功率,主要是克服桨叶在运动过程中所遇到流体阻力,因此,所需功率不但和搅拌机的结构尺寸等有关,还和料浆性质、桨叶转速和安装位置等有关,搅拌过程是一个复杂的操作,从理论上可推得:
非金属矿产加工机械设备
式中ρ——浆料密度(kg/m3);
n——桨叶转速(r/min);
d——桨叶直径(m);
ζ——功率系数,由实际测定得出。
对于三叶单层螺旋桨搅拌机,可用下式估算:
非金属矿产加工机械设备
式中ρ——浆料密度(kg/m3);
n、d——同上。
上述计算功率只考虑搅拌机本身克服料浆阻力的因素,没有包括机械运转部分和传动装置等功率消耗。因此,确定电动机功率时,还必须考虑搅拌机和传动装置的机械效率,同时还应乘上功率储备系数,功率储备系数可取1.5左右。
表4-11列出了螺旋桨式搅拌机的规格和主要技术性能。
表4-11螺桨搅拌机的规格和主要技术性能
5. 影响粒径大小的因素有哪些搅拌速度的大小和变化,对粒径的
a 温度:颗粒大小随温度升高而变小。
b 搅拌的速度:如果搅拌速度太小, 颗粒会大一些,颗粒会凝集附着在反应器内壁或搅拌棒上;如果搅拌太快,颗粒会 小一些,容易生成沙砾状聚合物。
c 搅拌器的形状。
d 单体的浓度:苯乙烯浓 度增大,使得分散效果不好,形成的聚苯乙烯会挨在一块儿,使得粒径变大。
e 分 散剂用量:PVA 加入的量多,会减小粒径。
f 冷凝速度: 温度从高温慢慢的降到 低温的产物粒径相对大一点。
一是适当温度,温度高些粒度小;二是浓度,浓度低些粒度小;三是转速,转速高些粒度小。
要真正控制好粒度(大小差不多),那么:温度不能有明显变化(保持温度不难),浓度也尽量保持稳定(逐步加料),转速要注意均匀度(即边上的与中间的线速度要差不多,方法有桶边加档板,转轴不能是圆的)。
不同材料粒度,有不同的最佳温度、浓度、转速,
6. 搅拌器直径和深度的关系
你好,搅拌器直径和深度的关系:机械搅拌器直径大小与罐径的比例从机械搅拌器的功能可以知道,叶轮叶片的直径大小不是任意决定的,它可以影响叶轮的排出流量,也可以影响动力消耗,也就是可以影响向液体中输入能量的大小,说明叶轮的大小直接影响搅拌过程的进行。如果叶轮的大小选择合理,就能供给搅拌过程所需要的动力,还能提供良好的流动状态,完成预期的操作。叶轮叶片的大小一般以桨径的大小(所谓桨径是指叶轮回转时前端轨迹圆的直径)和叶轮的宽度来衡量。桨径的选择与机械搅拌器的种类有厅核关,与罐径的大小有关。当搅拌罐中出现“圆柱状回转区”漩涡时,这个部分的混合很差,致使混合时间较长,不利于搅拌过程,所以一般都要设法缩小这个区域。如果减戚伏宴小桨径就可以缩小“圆柱状回转区”的半径。高银如果因为种种原因,不方便更改桨径,那么除了通过减小浆径来缩小“圆柱状回转区”外,还可以通过以下两种方法:安装搅拌器装置附件——挡板,搅拌器的偏心式安装
在低黏度液时,由于液体流动性好,能量传递较容易,所以不必担心由于桨径的减小会造成叶轮外围出现死区。此时,只要叶轮的搅动液量范围够,就应将桨径取小些,以桨径与罐内径之比叫桨径罐径比d/D,一般桨式叶轮的d/D=0,35~0.8。涡轮式叶轮的d/D一般为0.25~0.5。桨式之所以将d/D的范围取大些,是因为它的转速较低,还常用在黏度较高的条件下。考虑到具体的操作目的,还可将桨径尺寸选择更合理些。请参考!