当前位置:首页 » 眼观万物 » 地图为什么使用这四种颜色

地图为什么使用这四种颜色

发布时间: 2022-05-13 05:30:26

㈠ 我国地形图上有几种颜色每种颜色分别代表什么

大致四种。

绿色:平原或盆地。

黄色:沙漠。

橘黄:高原或丘陵,

蓝色:河流。

用数学语言表示,即:将平面任意地细分为不相重叠的区域,每一个区域总可以用1、2、3、4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。


(1)地图为什么使用这四种颜色扩展阅读:

这是根据数学史上着名的四色问题,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。

以最简练的方法区分国家,标示国界。四色问题的内容是:任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。

㈡ 地图为何至少有四种颜色标示

这其实是一个数学问题,已经有了证明:至少用四种颜色可以将地图的各个区域分开。

㈢ 为什么地图上用四种颜色就可以区分开

四色问题又称四色猜想,是世界近代三大数学难题之一.
四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色.”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字.”(右图)
这里所指的相邻区域,是指有一整段边界是公共的.如果两个区域只相遇于一点或有限多点,就不叫相邻的.因为用相同的颜色给它们着色不会引起混淆.
四色猜想的提出来自英国.1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色.”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试.兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展.
1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、着名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、着名数学家汉密尔顿爵士请教.汉密尔顿接到摩尔根的信后,对四色问题进行论证.但直到1865年汉密尔顿逝世为止,问题也没有能够解决.
1872年,英国当时最着名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题.世界上许多一流的数学家都纷纷参加了四色猜想的大会战.1878~1880年两年间,着名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了.
肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图).如为正规地图,否则为非正规地图(右图).一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了.
肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了.这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了.
不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径.第一个概念是“构形”.他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个.
肯普提出的另一个概念是“可约”性.“可约”这个词的使用是来自肯普的论证.他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图.自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据.但要证明大的构形可约,需要检查大量的细节,这是相当复杂的.
11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞.他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽.不久,泰勒的证明也被人们否定了.人们发现他们实际上证明了一个较弱的命题——五色定理.就是说对地图着色,用五种颜色就够了.后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获.于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题.
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行.1913年,美国着名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约.后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色.1950年,有人从22国推进到35国.1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国.看来这种推进仍然十分缓慢.
高速数字计算机的发明,促使更多数学家对“四色问题”的研究.从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明.他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手.
他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图.到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组.在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素.
电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程.美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序.就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界.
这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决.
“四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点.在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧.如将地图的着色问题化为图论问题,丰富了图论的内容.不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用.
不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法.直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法.

㈣ 世界地图一般有哪几种颜色,为什么

世界地图有四种颜色,即是着名的“四色定理”。四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。

(4)地图为什么使用这四种颜色扩展阅读

四色定理(世界近代三大数学难题之一),又称四色猜想、四色问题,是世界三大数学猜想之一。四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公共点的两条直线。很多人证明了二维平面内无法构造五个或五个以上两两相连区域,但却没有将其上升到逻辑关系和二维固有属性的层面,以致出现了很多伪反例。

不过这些恰恰是对图论严密性的考证和发展推动。计算机证明虽然做了百亿次判断,终究只是在庞大的数量优势上取得成功,这并不符合数学严密的逻辑体系,至今仍有无数数学爱好者投身其中。

㈤ 地图为什么用4种颜色色标示

1852年,英国伦敦大学学生弗兰克林.格思里首先提出了这个问题。即:一切地图,都只需要四种颜色,即可标示出所有国家的边界,根本就不需要第五种颜色

1976年美国的阿普尔(K.Appel),黑肯(W.Hakan)和考齐(J.Koch)等三人依靠计算机证实了四色猜想。将每个区域用一个圆圈(通常称它为结点)表示,结点间的连线表示这两个区域相邻,则图4所示的图(网)状结构很好地表达了图所示地图中行政区的相互关系。
将行政区图抽象成图状结构之后,着色问题就成了:如何为顶点着色使每条边的两个端点具有不同的颜色。求着色问题的最优解是很困难的,但有一种简单的求近似解的方法:先用一种颜色给尽可能多的互不相邻的结点(即不是同一条连线的两个端点)着色。然后用另一种颜色在未着色结点中给尽可能多的结点着色,如此反复直到所有结点都已着色为止。用这种方法对图4着色,可以得到以下的一组解。
(1)红色 A C E (2)黄色 B D F(3)绿色 G I (4)蓝色 H

㈥ 为什么地图只需四色即可染完

四色定理 指出每个可以画出来的地图都可以至多用4种 颜色 来上色,而且没有两个相接的区域会是相同的颜色。被称为 相接 的两个区域是指他们共有一段边界,而不是一个点。

这一定理最初是由Francis Guthrie在1853年提出的猜想。很明显,3种颜色不会满足条件,而且也不难证明5种颜色满足条件且绰绰有余。但是,直到1977年四色猜想才最终由Kenneth Appel 和Wolfgang Haken证明。他们得到了J. Koch在算法工作上的支持。

证明方法将地图上的无限种可能情况减少为1 936种状态(稍后减少为1 476种),这些状态由计算机一个挨一个的进行检查。这一工作由不同的程序和计算机独立的进行了复检。在1996年,Neil Robertson、Daniel Sanders、Paul Seymour和Robin Thomas使用了一种类似的证明方法,检查了633种特殊的情况。这一新证明也使用了计算机,如果由人工来检查的话是不切实际的。

四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证。最终,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任。

缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学证明应当像一首诗——而这纯粹是一本电话簿!”

㈦ 为什么画中国地图至少需要四种颜色

四色定理知道吧。06年已经证明出来了。
中国所有省份都不存在飞地,所以符合四色定理的的要求。只要用四种颜色就可以全部搞定,3种颜色不够用,5种颜色太多。

㈧ 地图涂色的秘密为什么至少需要四种颜色无法做到比四种更少呢

地图只使用四种颜色,是因为四色定理的存在。世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里(Francis Guthrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。1878~1880年两年间,着名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。

㈨ 地图上有几种颜色,用来表示什么

普通地图用的就是着名的四色原理,并无含义。
如果是分层设色地形图,则分层设色等高地形图中的颜色是与高度相对应的,深度高度与颜色的深浅成正比。
蓝色:江,河,湖,海
绿色:平原,丘陵
黄色,棕色:高原,山脉,沙漠
颜色的深浅与高度(深度)相对应,具体情况可参照地图的图例。
地图上的颜色:
•黑色----人造景观(man-made
features)(建筑物,道路,小径)和岩石(Boulders)(大石头,悬崖峭壁)
•棕色----高线:等高线和符号(表示山丘和小坑);沥青/砾石路面,包括
:高速公路,主干道,宽行人道;篮球场等。
•蓝色----任何有水的地方。(湖泊,溪流,泥沼)
•绿色----植被。浓密而难通过的地区。(绿色越深,越难通过)
•白色----普通的林区,易通过。
•黄色----空旷地。易奔跑。
•黄绿色----禁入私人区,果园,花坛。
•紫色----路线

㈩ 中国地图上每个省都有颜色,每个颜色各代表什么

用不同的颜色表示不同的省份是为了便于区分相邻省份的轮廓、界线,但是每个颜色并不能代表什么,只是让大家更容易区分各省区市的轮廓,更容易迅速找到不同省区市的位置而已。

这样做的目的是方便地图使用者直接区分行政区域边界,并区分行政区域的形状和大小。


(10)地图为什么使用这四种颜色扩展阅读:

中国地图,是指着重展示中华人民共和国领土以及疆域内各类地理要素的分布的地图。按照地图的一般分类方法,中国地图分为政区地图、地形图、自然地理地图、人文地理地图、卫星影像地图等类型。

在省级地图上,区域、省和州等次级司法管辖区的边界和轮廓用颜色编码。在城市地图上,用不同的颜色来区分县、旗和县级城市的边界和轮廓。在县行政区划地图上,还可以用不同的颜色显示4级乡和5级乡、村庄的辖区和中心。

热点内容
菜市场塑料袋里为什么有粉状东西 发布:2025-01-16 12:36:18 浏览:385
陶虹为什么不修复一下眼睛 发布:2025-01-16 12:34:59 浏览:65
为什么晚上不能吹竹笛 发布:2025-01-16 12:34:59 浏览:719
然后给他发微信他也不回为什么 发布:2025-01-16 12:34:59 浏览:166
为什么眼睛看手机屏幕有动字 发布:2025-01-16 12:24:16 浏览:190
大龄女单身相亲后为什么拖时间 发布:2025-01-16 12:23:40 浏览:495
饮用水测汞过几天不一样是为什么 发布:2025-01-16 12:22:10 浏览:33
为什么在水里睁眼水不会到眼睛里 发布:2025-01-16 12:18:05 浏览:816
肾结石去医院为什么要去看眼睛 发布:2025-01-16 12:12:21 浏览:10
淘宝上的好评为什么评价不好 发布:2025-01-16 12:12:16 浏览:316