当前位置:首页 » 眼观万物 » 为什么眼睛被白光刺过会看到绿光

为什么眼睛被白光刺过会看到绿光

发布时间: 2024-06-10 11:59:03

① 色彩理论的光色原理

色彩是一种涉及光、物与视觉的综合现象,“色彩的由来”自然成为第一命题。所谓色彩术语,即色彩的专用名词。了解这些名词的含义,一方面是基本知识的组成部分,另一方面也是阐述色彩原理与规律的必要的中介语言,所以应在开始就作为讲解的内容。

② 我们日常所看到的黄光 有可能是纯黄光 也有可能是红光+绿光

人的眼睛只能感觉到电磁波谱中很窄的一段,这段就是可见光。可见光中不同的频率引起人的不同颜色感觉(红色770~620 nm、橙色620~600nm、黄色600~580 nm、绿色580~490 nm、蓝色490~450 nm、紫色450~400nm),因此物体的颜色是由射入人眼的光波频率(或波长)决定的。自然界的物体有丰富的色彩,而形成各种颜色的成因却是个很复杂的问题,下面只从两方面粗略地给以介绍。
1、发光体的颜色
发光物体即光源,光源可分两大类,一类是热辐射光源,另一类是非热辐射光源。
1.1热辐射光源的颜色
热辐射光源的发射光谱都是连续光谱,而光谱中各种色光成分的组成与发光体的温度有关。温度越高,光谱中高频率部分(可见光中的蓝、紫色光以及紫外线)越多,温度越低,光谱中低频率部分(可见光中的红、橙色光以及红外线)越多;因此热辐射光源的颜色与温度有对应关系。恒星发光就是热辐射,天文学上就按照颜色把恒星分为青、白、黄、红4个等级。炼钢炉里铁水的温度,以前就是老工人根据经验靠眼睛观察颜色来判断的,现在可采用光电比色议等精密仪器,但原理仍然相同。
1.2非热辐射光源的颜色
如在辐射过程中物质内部发生化学变化(如燃烧)的叫化学发光;用外来的光或任何其他辐射不断地或预先地照射物质而使之发光的过程叫光致发光(如荧光、磷光);由电场作用引起的辐射过程叫场致发光(如电弧放电、火花放电、辉光放电);通过电子轰击也可以引起固体(如某些矿物)产生辐射这叫阴极发光。这些非热辐射光源辐射的电磁波的频率,跟物质内分子、原子、电子的能级跃迁有关。所以非热辐射光源的颜色就由能级跃迁时辐射的光子能量(或光的频率)决定。下面只介绍日常生活中常见的光致发光和场致发光颜色的成因。
(1)光致发光的颜色
如将含金属的盐类放入火焰中,会产生激发态的金属原子,根据玻尔原子理论,当激发态的金属原子回到基态时,因为不同的原子有不同的能级排列,所以不同的金属盐类辐射的光子能量不同也就是颜色不同,这就是烟火的各种颜色配方的由来。
还有些物质被激发后再荧光放射,发射出某一特殊的颜色,这是因为物体吸收能量后电子被激发至高能级,物质再以放热和发光(荧光)的形式将能量释出而回到基态所致。例如荧光漆在蓝光照射时,呈现出红色,是因为荧光漆吸收了高能量的蓝光后先放出部分能量,再放出低能量的红色荧光回到基态所造成。
(2)场致发光的颜色
霓红灯、钠汽灯、水银灯、日光灯,都是利用放电(即电子撞击)来激发气体原子,实现原子跃迁发光的。霓虹灯充入不同的气体,而每种气体原子都有自己的特征谱线,所以不同的气体原子跃迁发光的频率各异,从而颜色也就不同。地球南北极的极光现象,是由于太阳黑子产生的太阳风吹向地球,其中一些高能量的粒子(如电子、质子等)在地磁场的作用下以螺旋路径进入南北极,在南北极上空与大气中的氧、氮分子碰撞,氧、氮分裂为原子,并被激发而发光,因此极光现象可视为自然界的霓虹灯。但是像日光灯和马路上的水银灯,这类灯光伴有相当强的紫光及紫外线,因此在灯管壁上涂一层荧光粉,荧光粉可以吸收紫外线而放出较底能量的可见光。不同的荧光粉由不同的原子组成,从而有不同的能级排列,所以涂了不同荧光粉的灯管还会产生不同的颜色。
2、非发光体的颜色
它与物体本身的性质有关,也与入射光的频率成分有关。当光射到物体上时,某波长的能量与物质内原子的振动能或电子发生跃迁所需的能量相同时,光就易被吸收,其他波长的光就不易被吸收。物质对光的选择吸收决定了物体各自的颜色。吸收光辐射或光能是物质的一般属性。下面具体分析白光照射物体的情况。白光照射到物体表面时,其中一部分光被物体散射或反射(对于透明物体还有一部分透过物体),另一部分光则被物体吸收。所以人们看到的是物体的反射光颜色、散射光颜色、透射光颜色。
2.1反射光的颜色
是指物体表面层对光的直接反射而形成的颜色,这些反射光遵守反射定律。
(1)当光与物质本身没有其他作用即没被吸收全部直接反射时,表面色一般为白色。同一个物体在不同的光源照射下可以呈现不同的颜色,就是由于不同的光源发射的光波频率成分不同且该光被直接反射入人眼而造成的。
(2)复色光(白光)照射时,物体有多种色彩,而使用单色光照射物体,则只能呈现一种颜色或黑色。因为物体表面(特别是一些颜料)在反射过程中有强烈的选择吸收作用,因而表面色为某种特定的颜色。譬如,叶子的绿色是因为叶绿素将白光中的红光和蓝光吸收进行光合作用,而反射出剩余的绿光。染料这种有机化合物在可见光谱区及近紫外和近红外区有明显的吸收特征。染料在阳光照射下,除反射跟它相同的色光以外,还反射一些它的近邻色光。例如黄染料除了反射黄光,还反射一些它的近邻色光橙光和绿光,同时吸收其他色光;蓝染料除了反射蓝光,还反射一些他的近邻色光紫光和绿光,同时吸收其他色光;这两种染料混合在一起,就只反射交叉部分———绿光,其他色光均被吸收,混合染料就呈绿色了。
2、干涉色则是由于表面层(有时是附着层或镀膜)的反射光干涉作用使某种色光得到加强,某种色光减弱而形成的颜色。例如阳光下油膜和肥皂泡的颜色,摄像机镜头增透膜的颜色等。
2.2、散射光和透射
光的颜色当光束通过光学性质不均匀的物质时,从侧向可以看到光,这叫光的散射。瑞利定律指出,散射光中短波占优势。所以用强光束照射装满水的玻璃容器,水中加几滴牛奶使之成为浑浊物质时,从侧向观察白光散射,散射光带青蓝色。从面对入射光的方向看,通过散射物质的光即透射光,由于缺少了短波成分,便显得比较红。清晨日出或傍晚日落时,看到太阳呈红色,也是如此,即此时太阳光几乎平行于地面,穿过的大气层最厚,所有波长较短的蓝光等几乎都侧向散射,仅剩下波长较长的红光到达观察者所致。仰视天空观察散射光则是浅蓝色(蓝色海洋的成因也如此)。正午时太阳所穿过的大气层最薄,散射不多,故太阳仍呈白色。

③ 人眼睛看到物体颜色的物理问题

对于物体的颜色我们一般说的是它在自然光下(即白光下)看到的颜色.
你说的这两个都没有错,或许是仁者见仁.
物体的颜色呈现,是由于光照到物体上,然后反射到我们眼睛里而产生的视觉效果,本质上会对任何光线都反射,只不过有的被反射回来的多,有的被反射回来的少,反射回来的光的颜色主要决定了物体的颜色.
如果要问光由什么组成,可以说是不同频率的电磁波,微观的说由光子组成

④ 防蓝光眼镜为什么反射出绿光

我们在讨论这个问题之前,先来看下何为有害蓝光。在我们自然界中本身没有单独的白光,白光是由蓝光、绿光、红光组成的。绿光与红光能量较小,对眼镜刺激较小,蓝光波短,能量高,能够穿透晶状体直达视网膜,对眼睛造成伤害。随着科技的发展,白光不仅仅在自然界中存在,在我们日常生活中也有。很多LED显示屏,为何这么亮这么白,就是因为这些显示屏释放出来了大量的蓝光。如果人眼在这些高能量的蓝光长时间照射下,轻者会感觉到眼干、眼涩、眼疲劳等症状。重者会造成近视、黄斑病变等多种眼科疾病。

⑤ 人的眼睛为什么能看见颜色

能看见颜色表示人眼睛可以接收到一定频率的电磁波
电磁波中的可见光由于自身的频率不同,所产生的颜色也就不同

几世纪以来,颜色本身就是一个难解的谜题。举例子来说,苏格拉底就曾经假设说“火”之源起,乃是因眼睛结合了对象本身的“白”(whiteness)所产生的颜色。之后,牛顿更探索光与色彩之间的关系;其后历经许多科学研究,终于在20世纪确认了光波与色彩感应之间的绝对关系。

如今,色彩调和与色彩调性方面的研究信息,直接影响了艺术家、设计师和广告AE人员。本篇关于色彩理论的指南,旨在探索如何于网站上有效使用色彩,同时也提供了许多色彩调和技巧,让您善用色彩来驾驭网站设计。
色彩学

我们能看到颜色是靠三个元素相互作用而成:光源、物体的反射特性、以及人体视网膜和脑部视觉皮质区对光波的处理方式。不管我们使用哪种媒材来作业 -- 绘画、印刷或网络 -- 我们都得依赖上述过程才能有效使用颜色。 色彩的排列 -- 彩虹
十七世纪末期,牛顿证明了色彩并非存在于物体本身,而是光作用的结果,且只要将可视光谱上的长短光波结合起来即可形成白光。这些可视光的波长可对应到七个不同的颜色:红、橙、黄、绿、蓝、靛、紫。

牛顿在实验中所分离出来的可视光谱其实才占了所有电磁光谱的一小部分,整个光谱范围从分为“短频、长波区”(例如收音机调频)到“高频、短波区”(例如 X 光)。可视光谱的区域是介于红外线与紫外线之间,波长约为 400nm (紫色) 到 700nm (红色) 之间。虽然牛顿证明这些光波结合在一起即形成白光,但其实只需要红、绿、蓝三光波就可以产生白光。

光的吸收与反射
当光波投射在物体身上后,该物质会传送、吸收或反射不同部分的光波。根据不同物体的特性以及它本身的原子构造,它可能反射了绿光但吸收了其它的波长。这时候人们的视网膜和脑部视觉皮质区会处理此一反射光,然后形成我们所看到的颜色。

艺术家和设计师将颜色复制到画布或纸张上的时候,他们便是仿真此一过程,利用颜料吸收了某个部分的光波、反射出其它光波。例如要产生绿色,我们可使用会吸收红、蓝光波的颜料即可。此一过程是所有绘画与印刷媒体的色彩模式基础。

一切靠眼睛
当然,不论是反射自物体或是发射自光源本身,我们处理光波的能力都是靠视网膜和脑部的视觉皮质区。视网膜内有三个接收器(或者说是锥细胞)可响应某些光波的频率。红色锥细胞能感应低频率的波长,绿色锥细胞反应的是中频率的波长,蓝色锥细胞反应的是高频率的波长。这些锥细胞的运作并非二元性的,而是类似频道一样,可将刺激分别传达至脑部的视觉皮质区,经过处理后才产生出我们所看到的颜色。

为了产出特定颜色,艺术家/设计师们必须靠着增减光波的方式,让人体内的视觉接收器只反应到某些光波。至于应该用加法或减法原理,则要看你使用何种材质来表现你的作品了。色彩模式与色彩管理 设计师处理颜色的方法通常有两种:一、加色法,混合不同颜色的光波以形成白光;二、减色法,使用颜料来减少光波。传统的艺术家所使用的色盘和 CMYK 系统都是减色法模式。在网站上,我们所面对的是光的投射,而不是从物体上反射回来的光,所以使用的是加色法模式,我们称它为RGB。

加色法
在大自然中,我们所看到的光波是经过物体反射进入我们的视网膜,但产生色彩的方式不仅只这一种。例如,舞台灯光是利用白光穿过有色滤镜来产生不同的色光。计算机屏幕也是使用投射光波的方式,但不同的是它借由让电子光枪发光投射到含磷的屏幕来产生色光。这些电子光枪可以发出三种颜色:红、绿、蓝。借由这三种色光,计算机屏幕可制作出完整的光谱。这就是大家所熟知的 RGB 色系。

在 RGB 系统中,设计师也可以透过混合三原色的方式做出一个光谱。混合任两个原色,就会产生三个次原色:青、洋红、黄。如前面所说的,将光的三原色加在一起就可以做出白光。所以,如果一个 RGB 的值为 255,255,255 则表示为白色。如果完全拿掉这三原色的光 (RGB: 0,0,0) 则产生黑色。

减色法
RGB 模式的相反模式就是 CMYK 模式,也就是使用减少光波的方式来产生颜色。由于物体颜色来自于反射的光波,此一系统乃使用三原色来吸收物体的红、绿或蓝光。例如,如果你减少了红光,那么多余的绿色波和蓝色波就会产生青色。用来除去红光、反射绿、蓝光的颜料就会显示青色。相同的,平面印刷设计师会使用洋红来吸收掉一部份的绿光,以及使用黄光来吸收掉一部份的蓝光。 这样一来,我们很明显的可以知道 CYMK 模式中所使用的三原色就是 RGB 模式中的次颜色,反之亦同。再者,如果将红、绿、蓝光混合在一起形成白光,那么就表示将青、洋红、黄三色的颜料混合在一起就会产生黑色,因为三原色的光波都将被颜料所吸收了。然而受限于颜料和印刷系统的因素,混合青、洋红、黄并无法完全吸收掉所有的光波。因此实际上还必须加上一个黑色才能完成,所以就产生了 CMYK 里面的 K 元素了。

色彩管理
由于有这两套不同的复制颜色方式,设计师若必须同时创作数字与印刷影像可就伤脑筋了。除了对应加色法和减色法之间的困难外,RGB 和 CMYK可使用的色彩范围差异也相当大。因此对跨媒体设计师而言,拥有一套可根据输出设备做色系转换的色彩管理系统可减轻不少头痛问题。色彩管理系统可包含在操作系统,某些应用软件之中。
色彩调和

视觉设计最大的挑战之一便是找出有效的调和色彩,让色系既不过于单调,也不过于夸大。想了解色彩平衡之间的关系,可从了解色环开始着手。色环呈现出某一色彩模式中所有可能的色相 每个色彩模式都包含了一组三原色,然后经由这一组三原色的相互混合而产生不同的颜色。在传统色彩学中,三原色指的是蓝、红、黄;而在 RGB 色彩模式中,色光的三原色是指红、绿、蓝。任何两个色光的组合会产生一组次颜色。三次色则是混合了原色与次色,或者是混合两种次原色所产生。我们用色环来呈现颜色的逻辑性。你可以从下面的图中看出, RGB 的色环和传统艺术家们所使用的色环是很不一样的。

同色调和:单一颜色,只是深浅、色调和明暗度不同。 近似色调和:使用邻近的颜色或在色环上很接近的颜色做调和。

互补色调和:使用色环上两个相对的颜色做调和。这样的颜色组合通常可以提供最大程度的对比感觉,但若过份使用使会流于夸大。

对比色调和:使用一种颜色,再加上其互补色旁边的两个颜色做调和。对比色调和能提供比互补色调和较柔和的对比。

三角调和:使用色环上三个等距离颜色。

双互补调和:使用两组 (共四色) 互补颜色。

在探索色彩调和的时候,通常最好从纯色下手,然后再尝试不同程度的渲染、色调和明暗度。接着你可使用网站仿真图先行测试某颜色组合的视觉特效。记得,对比的重要性不只是在于为了吸引人而设计;它也可能帮助或妨碍网站的阅读性。
色彩所传达的意义

当我们在检视色彩的科学本质和色彩调和的美学考量时,我们发现感官在色彩运用上扮演了很重要的角色。除了感官反应与辨识调和色彩外,人类内在对色彩的反应还有更深层的一面。色彩能引发强烈的生理/心理共鸣,不管是正面或负面。当你在选定颜色组合时,请确定你所选择的颜色能引起适当的回响。

色彩的生理反应
虽然并没有直接证据显示色彩能引发特定反应,但是研究显示,某些颜色确实能够引起一些生理上的反应。例如,红色就是一种非常刺激的颜色,往往会令人心跳加快、呼吸急促。所以,红色非常适合用在需要引起注意和强调的时候,但若用在背景颜色的时候可能显得过于强烈。相同地,黄色也能引起注意,但因为其反射性太强,容易造成眼睛的疲劳和不舒服。另外一方面,蓝色对神经系统具有放松的效果,且根据一些研究显示,以蓝色当背景还能增加生产力。但是,如果你的产品与食物有关,千万不要用蓝色作为背景颜色,因为蓝色可是会抑制人们的胃口喔。

色彩的象征
色彩所象征的意义有时候跟大自然中的事物有关。例如,天空与太阳的颜色所产生的联想举世接然。然而,大部分的色彩意义都跟民族文化有关,例如,政治、宗教、神话或社会结构等 -- 这些因素可能会随着时间与地域的不同而产生差异。若你设计的网站是针对国外地区,那你可千万得小心,同一颜色在不同文化可能会有南辕北辙的效果。另外,大部分的颜色都同时具有正面和负面的联想。你可以运用色彩的质量和饱和度的不同,或者是用混合两个颜色的方式来强调某个特别的涵义。

一般在西方的文化中,色彩所传达的涵义为:

红色:热情、浪漫、火焰、暴力、侵略。红色在很多文化中代表的是停止的讯号,用于警告或禁止一些动作。

紫色:创造、谜、忠诚、神秘、稀有。紫色在某些文化中与死亡有关。

蓝色:忠诚、安全、保守、宁静、冷漠、悲伤。

绿色:自然、稳定、成长、忌妒。在北美文化中,绿色代表的是“行”,与环保意识有关,也经常被连结到有关财政方面的事物。

黄色:明亮、光辉、疾病、懦弱。

黑色:能力、精致、现代感、死亡、病态、邪恶。

白色:纯洁、天真、洁净、真理、和平、冷淡、贫乏。白色在中华文化中也代表着死亡的颜色。
选择最恰当的色彩组合
替网站选对颜色可不是一件容易的事;很多公司还特别聘请专业咨询人员,使其色彩组合能搭配、强化整体的品牌形象。但是,如果你自己就已经具有色彩调和感,并且了解某些颜色可能会引起什么样的反应,你只需照着你的方法进行,开发出有效的色彩组合。在你开始找寻对应的颜色之前,你必须先很清楚你网站所要传达的讯息和目标。一但你了解要传达的讯息后,就可开始进行调色工作了。在过程中,你免不了要不断地试验混合颜色,这是一个极具创意的过程。别害怕使用大胆的颜色组合,但在将你的产品公诸于世之前,记得要经过充分的测试喔!

⑥ 动物的眼睛为什么在晚上被光照到是绿色的啊

动物的眼睛在夜晚放光,并非是简单地反射了夜晚中极其微弱的可见光,而是反射了人眼看不见的红外线,并且在反射红外线时令其发生蓝移,变成了可见光。如果不是动物通过肌肉给眼睛内的液晶膜施加压力作用,令液晶膜表面就会带有一定量的负电荷,从而使得大量液晶分子被维持在某一激发态或称亚稳态上,动物的眼睛是不可能在夜晚放出可见光的,这样的可见光由于黑夜光强十分微弱,但具有与背景不同的奇特色彩,于是显出各种不同颜色。

某些动物在晚上活动时,其眼睛经常是呈荧光的颜色,例如猫的眼睛放绿光,牛的眼睛放蓝光,狼的眼睛放黄绿光。按照常识,在漆黑的夜晚照射到动物眼睛上的入射光的强度是很弱的,由此导致反射光的强度应该更弱,如果人们连入射光都看不见,怎么经过动物的眼睛一反射,反而看见了反射光了呢?难道入射光经过动物的眼睛反射后,反倒变强了不成?!更令人惊奇的是,有些动物的眼睛并非在夜晚一定会放光,只用当其需要用眼睛搜索目标时,其眼睛才会骤然闪射出明亮的冷光,而到了白天,在外界的入射光增强的状态下,动物的眼睛反而不再放光了,这又是怎么会事呢?

要想回答上述问题,就需要知道美国的隐形战机所用的吸波涂层的基本工作原理,即光电效应阈值可变原理,下面首先简单地介绍一下光电效应阈值可变原理。

实验表明,金属具有极强的反射雷达波(波长范围为毫米波——米波)的本领,当雷达波照射到金属表面时,绝大部分会不变地反射回去,由此导致目标被雷达观测到。但当同为电磁波的紫外辐射这种高频电磁波照射金属时,金属的反射系数将急剧减小,同时表面还会有电子逸出,这种现象称为光电效应。此外,光电效应的发生还与材料表面的形状有关。

隐形战机所用的吸波涂层分子的基态是处于较深的负能级状态,其表面分子无论怎样排列,雷达波显然都不能将其直接激发或电离。但如果利用电源或其他方式令吸波涂层表面携带一定量的负电荷,由于集肤效应,这些负电荷将集中分布在吸波涂层的表面上。当雷达波照射到带有多余负电荷、并按一定规律排列的吸波涂层时,其所带的负电荷将克服空气等因素的势垒限制作用,从“基态”跃迁到“激发态”或自由态,即飞离吸波涂层表面。这一过程是通过吸收雷达波的能量并将其转化为电子的动能来实现的。

令吸波涂层表面带有少量的负电荷,还可以改变吸波涂层表面上分子的能级。大家知道,吸波涂层内部分子的能级可以不受周围静电场的或恒稳电场的影响,但对于吸波涂层最外表面上能受雷达波照射作用的原子,其能级会受到表面上多余负电荷电场的电离作用而改变,被维持在某一激发态或称亚稳态上。雷达波的能量虽然很弱,不能使处于基态附近分子的能级由一个定态跃迁到另一个定态。但如果吸波涂层在表面所带负电荷电场的电离作用下被维持在高能级的激发状态上,则其能发生光电效应的所谓光电阈值就会大大降低,成为受吸波涂层表面电荷面密度影响的可调控的物理量。通过改变吸波涂层表面电荷面密度将其光电阈值调控在雷达波的频率下,受雷达波照射时吸波涂层表面按一定规律排列的分子就会立即发生光电效应,伴随着雷达波能量朝分子中电子的转移,使得雷达波的反射系数急剧减小。

吸波涂层表面的分子在失去电子后会再捕获电子,恢复到亚稳态或基态,并放出相应能量的光子。大量分子受雷达波照射时跃迁到更高能级的激发态或电离态后再捕获电子并向外发射光子时,不一定正好回到原亚稳态,而是向包括基态在内的所有各低能级跃迁,向外发出的光子能量将是包括了雷达波、原子的热辐射和周围的负电荷等所有作用于原子的能量,故该光子的波长与雷达波的波长会相差很多,且比吸波涂层表面的热辐射波长略短(有少量的蓝移),从而使雷达波被隐入到吸波涂层表面的热辐射中去,不能被雷达波的接收系统识别接受到。

以上即为光电效应阈值可变原理。笔者认为,上述光电效应阈值可变原理同样可以用来说明动物的眼睛为什么能够在夜晚发出可见光。

众所周知,看上去好像一片黑暗的夜晚。其实充满着人眼看不见的红外线。但是,红外线即使被物体反射,一般也不会变成可见光,除非被反射的红外线发生蓝移。在通常情况下,动物眼睛内的液晶膜分子是处于基态,无论其怎样排列,受到红外线照射的动物眼睛内的液晶膜是不会产生蓝移反射的。因此,动物的眼睛在白天和夜晚一般是不会放光的。

但是,如果某些动物能够通过肌肉给眼睛内的液晶膜施加一个压力作用,令其表面产生一个压电效应,则动物眼睛内的液晶膜表面就会带有一定量的负电荷,从而使得大量液晶分子受到液晶膜表面上多余负电荷电场的电离作用而改变,被维持在某一激发态或称亚稳态上,与此同时,肌肉还需改变液晶膜表面的分子排列,在这种情况下,当外界的红外线辐射作用到这些按照一定规律排列的处于激发态的液晶分子时,这些液晶分子会跃迁到更高能级的激发态或电离态,然后再捕获电子并向外发射光子。由于跃迁到更高能级的激发态或电离态液晶分子不一定正好回到原亚稳态,而是向包括基态在内的所有各低能级跃迁,由此导致向外发出的光子能量是包括了外界的红外线辐射、动物通过肌肉给眼睛内的液晶膜施加压力作用的能量,从而使得液晶膜表面的反射光发生蓝移,变成了人类眼睛可以看见的绿光、蓝光、黄绿光等可见光。

由上述分析可知,动物的眼睛在夜晚放光,并非是简单地反射了夜晚中极其微弱的可见光,而是反射了充满夜空的人眼看不见的红外线,并且在反射红外线时令其发生蓝移,变成了可见光,所以才有在看不见入射光、人们却能看见动物的眼睛反射光的情况。如果不是动物通过肌肉给眼睛内的液晶膜施加压力作用,令液晶膜表面就会带有一定量的负电荷,从而使得大量液晶分子被维持在某一激发态或称亚稳态上,动物的眼睛是不可能在夜晚放出可见光的,这样的可见光由于黑夜光强十分微弱,但具有与背景不同的奇特色彩,于是显出各种不同颜色

⑦ 晚上用手电筒照动物眼睛为什么会放绿光

狗类、兔子、猫类…

⑧ 鎴戞埓鐪奸暅鍦ㄥ己鍏夌収灏勪笅鎴栨櫄涓婅溅𨱔涓嬬湅鍒伴暅鐗囦笂链夌豢鍏夌偣锛屾庝箞锲炰簨锛

闀鑶灭殑闂棰桡纴姝e父

热点内容
努比亚配置为什么便宜 发布:2024-11-26 20:29:01 浏览:185
为什么苹果数据线接口不能普及 发布:2024-11-26 20:27:22 浏览:423
苹果电脑中软件为什么会那么少 发布:2024-11-26 20:14:23 浏览:964
为什么做梦到同一个地方找不到路 发布:2024-11-26 20:13:47 浏览:72
男生跟女生兄弟用情头是为什么 发布:2024-11-26 20:10:20 浏览:617
微信为什么进钱费劲 发布:2024-11-26 20:04:19 浏览:12
为什么男生不让你翻他手机 发布:2024-11-26 20:02:25 浏览:477
微软下载东西为什么一直准备 发布:2024-11-26 19:57:23 浏览:111
为什么淘宝没有显示无人车送货 发布:2024-11-26 19:57:20 浏览:591
为什么晚上闭灯以后头晕 发布:2024-11-26 19:57:17 浏览:611