眼睛为什么能看到颜色
A. 人为什么能看到颜色
原因如下:
人的视网膜上有两种细胞能产生视觉:视杆细胞和视锥细胞。视杆细胞对弱光敏感,在夜间及弱光下起作用:视锥细胞内有红、绿、蓝三种感光色素,它们不仅对光敏感,对颜色也非常敏感。
任何一种有色光线射到视网膜上,都能不同程度地分别引起这三种视锥细胞发生兴奋,沿着不同的神经通道,传入大脑皮层中的视觉中枢,产生相应的色觉。当三种感光色素受到刺激同等时,就显示白颜色。当它们受到不同比例的混合刺激时,即可形成各种各样的色觉。
颜色是通过眼、脑和我们的生活经验所产生的一种对光的视觉效应,我们肉眼所见到的光线,是由频率范围很窄的电磁波产生的,不同频率的电磁波表现为不同的颜色,对色彩的辨认是肉眼受到电磁波辐射能刺激后所引起的一种视觉神经的感觉。
颜色具有三个特性,即色相,明度和饱和度。颜色的这三个特性及其相互关系可以用三度空间的颜色立体来说明。
B. 为什么人的眼睛能分辨颜色
大自然中的颜色可以说是五彩缤纷、千变万化的。尽管世界上的颜色千差万别、变化无穷,却都离不开红、绿、蓝这三种基本色光。在我们人眼睛里的视网膜上,长有一种叫视维的感光细胞,它对这三种基本色光的刺激有特殊的感觉能力。另外,由于世上的各种颜色都是由这三种颜色按不同比例混合而成的,因此,人的眼睛就能分辨出各种各样的颜色了。
有的人可能会说:有的颜色我为什么分辨不出来呢?那可能就是患有“色盲”病了。
C. 人眼是怎样看到颜色的
眼睛最外层的无色透明部分叫做角膜, 中间的透明囊状物叫做晶状体. 紧贴着晶状体有一带孔的薄膜叫做虹膜,中间的小孔叫做瞳孔. 瞳孔的大小可通过肌肉的伸缩自动改变, 以控制进入眼睛内光的多少.光线强时,瞳孔变小;光线暗时, 瞳孔变大.晶状体和前面的角膜之间充满着无色透明的液体—— 水样液,晶状体和后面的视网膜之间充满着无色透明的胶状物质—— 玻璃体.角膜、水样液、晶状体和玻璃体都对光线产生折射, 它们的共同作用相当于一个凸透镜, 这个凸透镜的前焦点约在角膜前1.5cm处, 后焦点约在角膜后2.0cm处.用眼睛观察的物体, 距离都大于2倍焦距, 所以从物体射进眼睛里的光线经过这个凸透镜折射后, 在视网膜上形成倒立、缩小的实像, 刺激分布在视网膜上的感光细胞,通过视神经传给大脑,产生视觉, 于是我们就看到了物体. 太阳光由红橙黄绿青蓝紫七种颜色的光组成, 不同的物体能反射不同的光, 所以人眼能看到不同的物体呈现不同的颜色
D. 人眼为什么能看见各种颜色的光
焰色反应很复杂啦~~ 和原子结构有关.大概意思是:原子外层一个低能量的内层电子,在吸收能量后,被激发到外层的高能轨道去,其他的外层电子立刻补充上来,同时以光的形式释放能量.因为轨道是量子化的,所以能量是量子化的;所以光的波长也是不连续的,即有特定的颜色.
至于用兰色玻璃滤去黄光,就是利用补色的原理.由于蓝光和黄光互补,所以可以滤去黄光.
E. 人眼是如何辨识颜色的
人眼有敏锐的分辨颜色的能力,即“色觉”。白天光线线强时主要靠锥状细胞,其分辨颜色的能力最强;夜晚光线较弱时主要靠杆状细胞的活动,其分辨颜色的能力很低,即所谓“夜不观色”或“灯下不观色”。
至于眼睛为什么能分辨颜色,历来有许多种说法。目前比较公认的是色觉的三原色学说。按照这个学说,视网膜上的锥状细胞分三种,各含有不同的感光色素,分别对红、蓝、绿光刺激敏感,三种锥细胞所发生的色觉冲动,由三条不同的神经通路上传到视觉中枢的不同部位产生不同的色觉。
色觉异常可以用特制的各种有代表颜色的毛线或色盲图进行检查。另外,色弱的产生也可能由于感光色素合成不足,可继发于视神经炎或视神经萎缩等症。视网膜脉络膜病变也可形成色觉异常。
F. 人类的眼睛为什么可以分辨出五颜六色的颜色
眼睛的构造 其实眼睛的构造非常简单。除了转动、聚焦部分外,最重要的核心部分是被称为 “视网膜”的视觉神经系统。最麻烦的眼睛疾病就出在这么一层薄薄的膜上。 这层膜很薄是因为组成这层膜的神经细胞只有三层。第一层就是接受光的细胞,它 的中文叫“感光细胞”,其实它的英文是PHOTORECEPTOR,PHOTO就是光的意思;RECEPTOR就 是接受体的意思。这“感光细胞”分为两类:看黑白的(想象到黑白电视)和看彩色 的(彩色电视)。看黑白的并没有(颜)色。 在显微镜底下,看黑白的感光细胞是杆状的;看彩色的感光细胞是椎状的。 当年,科学家们猜测这看彩色的感光细胞肯定有很多很多种,才能把可见光的光谱 涵盖。上文提到了嗅觉神经有上万种才能嗅到上万种分子的味道,那么科学家们也 会假设视觉神经的机制也雷同。那么到底要有多少种接受不同颜色(光谱长度)的色 素分子呢?这时有一位美国的叫那森的年轻人,他在读博士学位时把接受彩色光谱 的色素基因克隆出来三个,经过他对这三个基因产物的吸光光谱进行扫描后发现, 一个红色色素基因一个蓝色色素基因和一个绿色色素基因就涵盖了全部可见光的光 谱范围。也就是说,人只有三个色素分子就能看到五颜六色了。 那森的发现其重要性与发现嗅觉机制的重要性分庭抗礼,按理说也应该获得诺贝尔 奖。但到目前还没有听到这个消息。那森得不得诺贝尔奖,都算得上是“老子英雄 儿好汉”因为他老爸就是诺贝尔奖得主。 当接受光子的感光细胞上的色素分子被一定长度的光子激活而打出了一个电子,该 电子使得另一分子发生构形变化而最终引发钠离子通道的开关被打开。这样,光信 号就变成了电子信号然后变成离子信号即生物信号。生物信号再传送给中间那一层 视觉神经细胞,经过调频放大,再把信号传送给最后一层细胞,称为“节细胞”的 视觉神经细胞。节细胞再把信号传递给大脑视觉处理系统。该系统并不在眼睛邻近 处,而是在离眼睛很远很远的后脑勺。这就是为何打后脑勺耳光时你会感到眼睛冒 金星。 一旦节细胞死亡,人的眼睛虽然还能接受光信号,但信号不能传递给大脑所以青光 眼患者虽然眼睛能看到但因大脑得不到信号而成了盲人。 人的感光细胞90%以上是看彩色的锥状细胞,看黑白的只占一小部分;相反,晚上活 动的动物比如老鼠90%以上是看黑白的杆状色素细胞。由于看黑白的色素分子需要的 光子能量小得多,所以晚上月光的能量就足以激活该分子上的电子。在月光下老鼠 看得非常清楚。而看彩色的色素分子则需要高强度的光子束才能激活,在晚上的煤 油灯下,人看不到什么颜色。因为彩色色素分子不能工作。由于光的波长越短能量 越大,蓝光比红光波长短,按理说晚上我们借助煤油灯能看到蓝色而看不到红色。 但事实并非如此,因为人的眼睛中红色感光细胞比绿色和蓝色感光细胞多很多倍。 这是为何我们看红灯看得清楚的原因。所以,“红灯停、绿灯行”的交通规则在全 世界范围内达到了统一。由于以上原因,晚上我们看花布的颜色与白天看是不同的。
记得采纳啊
G. 人的眼睛为什么能够看到世界上不同的颜色
有人提出,既然光速是最快的速度,为啥哈勃望远镜能够一下子就看到130多亿光年以外的星系?这比光速快乐多少倍?而且人眼还能够看到色彩缤纷的世界,这又是什么原因呢?
诸如此类的问题层出不穷,过去已经回答或讨论过多次了,既然还有很多朋友对这个事情很迷惑,就简单再说一下。
首先要弄清楚光年是什么意思。
一般说来,光速是指光在真空中传播的速度,已经成为物理里面的一个基本参数,准确值为c=299792458m/s。在计算物理题时如果不是要求那么精确,一般采用近似值,即每秒约30万千米。光年就是光速移动一年的尺度,记住是“尺度”而不是“时间”,也就是说光速是一个距离尺度,是一把量天尺。
1光年中的年,为了准确把握深空测量数值,采用儒略年为单位,1个儒略年准确的时间为365.25天,是回归年和恒星年的近似值。1个小时3600秒,1天24小时为86400秒,1个儒略年为31557600秒,光速为299792458m/s,这样1光年就是9460730472580800米,如果要求不是十分精确的情况下,一般采用1光年尺度为9.46万亿千米。
理论上,色彩有无数种组合,但在电脑里,人们采用红、黄、蓝三基色组合,如果电脑是8位rgb色彩模式,则一个r通道有2^8个灰度级,每种颜色有258个层次,这样就可以调制出(258)^3种颜色,也就是16777216种颜色。现在的电脑还有16和32位rgb,这样呈现的色彩层次就更丰富了。
在自然界,光影色彩的种类和层次理论上是无限的。
H. 闭着眼睛为什么能看到色彩
如果是在有光的条件下,闭上眼睛应该是可以看到橙色的,因为眼皮比较薄,只能阻挡一部分光线,所以我们仍旧可以看得到色彩。还有一种情况是在无光的条件下,可以确定的是无论在何种情况下,包括做梦,回忆,想象,都无法在大脑中确定色彩的存在,它们都是黑白灰,模糊的情况。因为色彩的确定是需要和眼睛进行交互匹配才会有的,闭上眼,就黑白灰了。
飞蚊症指眼前有飘动的小黑影,尤其看白色明亮的背景时症状更明显,可能伴闪光感。玻璃体液化和后脱位是飞蚊症的主要原因。70%的患者由此引起,但有四分之一的患者可能有威胁视力的病理变化,其中主要的是视网膜裂孔形成。见到飞蚊症时,应散瞳仔细检查眼底,包括裂隙灯三面镜检查,仅有玻璃体后脱离的无需特殊治疗,对有危害视力的病变应按相关原则治疗。
I. 人的眼睛为什么能看见颜色
能看见颜色表示人眼睛可以接收到一定频率的电磁波
电磁波中的可见光由于自身的频率不同,所产生的颜色也就不同
几世纪以来,颜色本身就是一个难解的谜题。举例子来说,苏格拉底就曾经假设说“火”之源起,乃是因眼睛结合了对象本身的“白”(whiteness)所产生的颜色。之后,牛顿更探索光与色彩之间的关系;其后历经许多科学研究,终于在20世纪确认了光波与色彩感应之间的绝对关系。
如今,色彩调和与色彩调性方面的研究信息,直接影响了艺术家、设计师和广告AE人员。本篇关于色彩理论的指南,旨在探索如何于网站上有效使用色彩,同时也提供了许多色彩调和技巧,让您善用色彩来驾驭网站设计。
色彩学
我们能看到颜色是靠三个元素相互作用而成:光源、物体的反射特性、以及人体视网膜和脑部视觉皮质区对光波的处理方式。不管我们使用哪种媒材来作业 -- 绘画、印刷或网络 -- 我们都得依赖上述过程才能有效使用颜色。 色彩的排列 -- 彩虹
十七世纪末期,牛顿证明了色彩并非存在于物体本身,而是光作用的结果,且只要将可视光谱上的长短光波结合起来即可形成白光。这些可视光的波长可对应到七个不同的颜色:红、橙、黄、绿、蓝、靛、紫。
牛顿在实验中所分离出来的可视光谱其实才占了所有电磁光谱的一小部分,整个光谱范围从分为“短频、长波区”(例如收音机调频)到“高频、短波区”(例如 X 光)。可视光谱的区域是介于红外线与紫外线之间,波长约为 400nm (紫色) 到 700nm (红色) 之间。虽然牛顿证明这些光波结合在一起即形成白光,但其实只需要红、绿、蓝三光波就可以产生白光。
光的吸收与反射
当光波投射在物体身上后,该物质会传送、吸收或反射不同部分的光波。根据不同物体的特性以及它本身的原子构造,它可能反射了绿光但吸收了其它的波长。这时候人们的视网膜和脑部视觉皮质区会处理此一反射光,然后形成我们所看到的颜色。
艺术家和设计师将颜色复制到画布或纸张上的时候,他们便是仿真此一过程,利用颜料吸收了某个部分的光波、反射出其它光波。例如要产生绿色,我们可使用会吸收红、蓝光波的颜料即可。此一过程是所有绘画与印刷媒体的色彩模式基础。
一切靠眼睛
当然,不论是反射自物体或是发射自光源本身,我们处理光波的能力都是靠视网膜和脑部的视觉皮质区。视网膜内有三个接收器(或者说是锥细胞)可响应某些光波的频率。红色锥细胞能感应低频率的波长,绿色锥细胞反应的是中频率的波长,蓝色锥细胞反应的是高频率的波长。这些锥细胞的运作并非二元性的,而是类似频道一样,可将刺激分别传达至脑部的视觉皮质区,经过处理后才产生出我们所看到的颜色。
为了产出特定颜色,艺术家/设计师们必须靠着增减光波的方式,让人体内的视觉接收器只反应到某些光波。至于应该用加法或减法原理,则要看你使用何种材质来表现你的作品了。色彩模式与色彩管理 设计师处理颜色的方法通常有两种:一、加色法,混合不同颜色的光波以形成白光;二、减色法,使用颜料来减少光波。传统的艺术家所使用的色盘和 CMYK 系统都是减色法模式。在网站上,我们所面对的是光的投射,而不是从物体上反射回来的光,所以使用的是加色法模式,我们称它为RGB。
加色法
在大自然中,我们所看到的光波是经过物体反射进入我们的视网膜,但产生色彩的方式不仅只这一种。例如,舞台灯光是利用白光穿过有色滤镜来产生不同的色光。计算机屏幕也是使用投射光波的方式,但不同的是它借由让电子光枪发光投射到含磷的屏幕来产生色光。这些电子光枪可以发出三种颜色:红、绿、蓝。借由这三种色光,计算机屏幕可制作出完整的光谱。这就是大家所熟知的 RGB 色系。
在 RGB 系统中,设计师也可以透过混合三原色的方式做出一个光谱。混合任两个原色,就会产生三个次原色:青、洋红、黄。如前面所说的,将光的三原色加在一起就可以做出白光。所以,如果一个 RGB 的值为 255,255,255 则表示为白色。如果完全拿掉这三原色的光 (RGB: 0,0,0) 则产生黑色。
减色法
RGB 模式的相反模式就是 CMYK 模式,也就是使用减少光波的方式来产生颜色。由于物体颜色来自于反射的光波,此一系统乃使用三原色来吸收物体的红、绿或蓝光。例如,如果你减少了红光,那么多余的绿色波和蓝色波就会产生青色。用来除去红光、反射绿、蓝光的颜料就会显示青色。相同的,平面印刷设计师会使用洋红来吸收掉一部份的绿光,以及使用黄光来吸收掉一部份的蓝光。 这样一来,我们很明显的可以知道 CYMK 模式中所使用的三原色就是 RGB 模式中的次颜色,反之亦同。再者,如果将红、绿、蓝光混合在一起形成白光,那么就表示将青、洋红、黄三色的颜料混合在一起就会产生黑色,因为三原色的光波都将被颜料所吸收了。然而受限于颜料和印刷系统的因素,混合青、洋红、黄并无法完全吸收掉所有的光波。因此实际上还必须加上一个黑色才能完成,所以就产生了 CMYK 里面的 K 元素了。
色彩管理
由于有这两套不同的复制颜色方式,设计师若必须同时创作数字与印刷影像可就伤脑筋了。除了对应加色法和减色法之间的困难外,RGB 和 CMYK可使用的色彩范围差异也相当大。因此对跨媒体设计师而言,拥有一套可根据输出设备做色系转换的色彩管理系统可减轻不少头痛问题。色彩管理系统可包含在操作系统,某些应用软件之中。
色彩调和
视觉设计最大的挑战之一便是找出有效的调和色彩,让色系既不过于单调,也不过于夸大。想了解色彩平衡之间的关系,可从了解色环开始着手。色环呈现出某一色彩模式中所有可能的色相 每个色彩模式都包含了一组三原色,然后经由这一组三原色的相互混合而产生不同的颜色。在传统色彩学中,三原色指的是蓝、红、黄;而在 RGB 色彩模式中,色光的三原色是指红、绿、蓝。任何两个色光的组合会产生一组次颜色。三次色则是混合了原色与次色,或者是混合两种次原色所产生。我们用色环来呈现颜色的逻辑性。你可以从下面的图中看出, RGB 的色环和传统艺术家们所使用的色环是很不一样的。
同色调和:单一颜色,只是深浅、色调和明暗度不同。 近似色调和:使用邻近的颜色或在色环上很接近的颜色做调和。
互补色调和:使用色环上两个相对的颜色做调和。这样的颜色组合通常可以提供最大程度的对比感觉,但若过份使用使会流于夸大。
对比色调和:使用一种颜色,再加上其互补色旁边的两个颜色做调和。对比色调和能提供比互补色调和较柔和的对比。
三角调和:使用色环上三个等距离颜色。
双互补调和:使用两组 (共四色) 互补颜色。
在探索色彩调和的时候,通常最好从纯色下手,然后再尝试不同程度的渲染、色调和明暗度。接着你可使用网站仿真图先行测试某颜色组合的视觉特效。记得,对比的重要性不只是在于为了吸引人而设计;它也可能帮助或妨碍网站的阅读性。
色彩所传达的意义
当我们在检视色彩的科学本质和色彩调和的美学考量时,我们发现感官在色彩运用上扮演了很重要的角色。除了感官反应与辨识调和色彩外,人类内在对色彩的反应还有更深层的一面。色彩能引发强烈的生理/心理共鸣,不管是正面或负面。当你在选定颜色组合时,请确定你所选择的颜色能引起适当的回响。
色彩的生理反应
虽然并没有直接证据显示色彩能引发特定反应,但是研究显示,某些颜色确实能够引起一些生理上的反应。例如,红色就是一种非常刺激的颜色,往往会令人心跳加快、呼吸急促。所以,红色非常适合用在需要引起注意和强调的时候,但若用在背景颜色的时候可能显得过于强烈。相同地,黄色也能引起注意,但因为其反射性太强,容易造成眼睛的疲劳和不舒服。另外一方面,蓝色对神经系统具有放松的效果,且根据一些研究显示,以蓝色当背景还能增加生产力。但是,如果你的产品与食物有关,千万不要用蓝色作为背景颜色,因为蓝色可是会抑制人们的胃口喔。
色彩的象征
色彩所象征的意义有时候跟大自然中的事物有关。例如,天空与太阳的颜色所产生的联想举世接然。然而,大部分的色彩意义都跟民族文化有关,例如,政治、宗教、神话或社会结构等 -- 这些因素可能会随着时间与地域的不同而产生差异。若你设计的网站是针对国外地区,那你可千万得小心,同一颜色在不同文化可能会有南辕北辙的效果。另外,大部分的颜色都同时具有正面和负面的联想。你可以运用色彩的质量和饱和度的不同,或者是用混合两个颜色的方式来强调某个特别的涵义。
一般在西方的文化中,色彩所传达的涵义为:
红色:热情、浪漫、火焰、暴力、侵略。红色在很多文化中代表的是停止的讯号,用于警告或禁止一些动作。
紫色:创造、谜、忠诚、神秘、稀有。紫色在某些文化中与死亡有关。
蓝色:忠诚、安全、保守、宁静、冷漠、悲伤。
绿色:自然、稳定、成长、忌妒。在北美文化中,绿色代表的是“行”,与环保意识有关,也经常被连结到有关财政方面的事物。
黄色:明亮、光辉、疾病、懦弱。
黑色:能力、精致、现代感、死亡、病态、邪恶。
白色:纯洁、天真、洁净、真理、和平、冷淡、贫乏。白色在中华文化中也代表着死亡的颜色。
选择最恰当的色彩组合
替网站选对颜色可不是一件容易的事;很多公司还特别聘请专业咨询人员,使其色彩组合能搭配、强化整体的品牌形象。但是,如果你自己就已经具有色彩调和感,并且了解某些颜色可能会引起什么样的反应,你只需照着你的方法进行,开发出有效的色彩组合。在你开始找寻对应的颜色之前,你必须先很清楚你网站所要传达的讯息和目标。一但你了解要传达的讯息后,就可开始进行调色工作了。在过程中,你免不了要不断地试验混合颜色,这是一个极具创意的过程。别害怕使用大胆的颜色组合,但在将你的产品公诸于世之前,记得要经过充分的测试喔!