当前位置:首页 » 眼观万物 » 光学性质为什么反射不同颜色

光学性质为什么反射不同颜色

发布时间: 2022-10-20 22:23:57

1. 为什么光源三原色和反射光三原色不一样

原理不一样。
对于光源,其颜色叠加的效果是同时显示出各光源的颜色效果,如红+绿,结果就是黄色。
对于物体,其颜色叠加效果是显示出各个颜色所共同反射的颜色。如,黄色的物体,反射红光和绿光较多,而蓝色的物体,反射绿光、蓝光和紫光较多,加在一起,就是他们共同反射的颜色,也就是绿色了。
所以说,光源的颜色叠加,会越来越亮,颜料的颜色叠加是越加越暗。
另外,光源的颜色是纯色,只与光源本身有关。如,红色的光源,它的颜色就是红色,不管你把它放到什么环境下,都不改变它的颜色。但是颜料的颜色不是纯色,还与周围的环境有关。(学过美术的人就知道这是“固有色”与“环境色”。)
三原色和三基色实际上是一个意思。就是说用从理论上讲,如果有三种颜色可以组合成其它任何一种颜色,那么这三种颜色就是三原色或三基色。
从颜色混合原理上讲,一般分为光学三原色(遵循颜色加法原理)和印刷三原色(遵循颜色减法原理)
光学三原色:红(Red)、绿(Green)、蓝(Blue)
组合的颜色:红+绿=黄(Yellow);
绿+蓝=青(Cyan);
红+蓝=品红(Magenta);
红+绿+蓝=白(White)
这里所写的颜色都是100%颜色的叠加。随着它们叠加比例的不同,则产生不同的色彩
印刷三原色:青(Cyan)、品红(Magenta)、黄(Yellow)
组合的颜色:青+品红=蓝;品红+黄=红;黄+青=绿;青+黄+品红=黑。
这里所写的颜色都是100%颜色的叠加。随着它们叠加比例的不同,则产生不同的色彩。由于印刷是通过油墨反射光的原理产生颜色,所以反应出的颜色的纯度与所用油墨有很大关系,特别是青品黄三色叠加成黑色在实际应用用无法达到纯黑,所以在印刷上会添加一种黑色,形成青品黄黑四色。
电视机,显示器就是光学原理的三原色,颜色是通过三色的不同量的叠加产生的。
书,宣传画等印刷品则是利用颜色的减法原理产生的。
由于光学上的颜色与印刷上的颜色成色原理不同,所以它们所表达的色彩范围(色域)也不同,一般说光学的色域包含印刷的色域。这就是为什么印刷品的颜色有时无法达到显示器或电视机上显示的颜色。
另:印刷的三色中,青色是指一般所说的天蓝色,品红是指一般所说的洋红,玫瑰红。在早期的印刷厂里一般工人称为蓝和红。所以这就造成了印刷三色是:红黄蓝三色的原因。而这与光学的红绿蓝造成了混淆。所以在这一点上一定要注意

2. 为什么不同度数的眼镜对光反射出的光颜色不同

光学镜片的透光率大概在91%左右,为了提高透光率又发明了增透膜,顾名思义就是增加镜片透光率的一种膜,厚度跟光的波长差不多,非常非常的薄,它的原理就是利用光波的特性,让反射的光波和入射光波波形相反,抵消掉反射的光波能量而提高透光率,这一技术让镜片的透光率提高到98%以上

三棱镜能把太阳光分成七彩色大家都知道,光线实际上就是有很多不同色的光波集合而成的,不同的光波波长不同,所以增透膜对应不同的颜色光的效果也不同,有些颜色透过更多,有些透过少些,透过少的光线被反射出来就是你看到的颜色了。实际上增透膜并非只有一层,而是有很多层不同厚度的来实现增透的目的,我们看到的镜片反光颜色就是增透膜最外层反射的颜色

不同品牌不同产品会把不同厚度的增透膜放在最外层,这就是增透膜有不同颜色的原因。有些眼镜店会说某某颜色更好,或者蓝色防辐射紫色防紫外线之类的,其实都是错误的,这不过是不同厂商的喜好而已,比如依视路都是黄绿色,HOYA用蓝色,蔡司不同系列有不同色等等。膜的颜色跟功能没有任何关系,也跟度数没关系,如果眼镜店给你不同度数的镜片颜色不同,可能镜片不是同一品牌或者不同系列的产品

3. 物体呈现不同颜色的主要原因是什么为什么说有光才有色

不同的物体对光的反射性质不同,能反射的光的频率不一样。 而频率不同,就代表光的颜色不同。

有光才有色,是因为色是光的频率不同造成的。

4. 眼镜反不同颜色的光

眼镜反射不同的颜色的光是由于眼镜片上有一层很薄的增透膜,用来增强特定颜色光的透光率,厚度大概是所反射颜色光波长的四分之一,利用的是光的干涉,高中物理光学会讲。
就像水面上的汽油,由于油层很薄而且有些微厚度差别,就反射五颜六色的光。
而眼镜片的价格除了镜片本身材质影响,不同厚度的增透膜也有工艺上的差别,也就有了价格的差别

5. 物体呈现不同颜色的机理

我很喜欢物理,不知道能不能为这位兄台解释明白?
看样子你不喜欢故弄玄虚式的理论分析是吧?那我这样说明吧。
理解这个原因的本质,用以下几个步骤吧。
我尽量精简地说,力求简洁、有效、明了。
第一:色彩是光线射在视网膜上后,我们所感受到的感觉。随着射在视网膜上的光线的频率的由底到高,我们的感觉由红色开始发生变化直到紫色(红橙黄绿蓝淀紫)。
第二:光在射入您的视网膜前的“经历”是这样的---首先:它从太阳中“产生”后,它是全光谱性质的,即含有各种频率(当然,也可以用波长来分,是一样的,只是频率和波长是两个互为倒数的起到相同作用的指标)的光,更直白点说,是含有红橙黄绿蓝淀紫七种光的“杂光”,正是由于它是七种颜色汇聚而成的杂光,所以是白色的;其次:它射到一个物体上,这是一个关键的步骤,它的一部分频率的光被物体表面吸收,比如,它射到黄铜上,红橙绿蓝淀紫光被吸收,只剩下黄光“幸免遇难”,这个幸免遇难的黄光接着被物体表面反弹(反射)而改变了方向后,射在了你的视网膜上,使你产生了黄色的感觉。
第三:光色的混合是一个要点,就是说,如果光在射到物体表面的时候,被吸收了红橙绿淀紫后,剩下的黄光和蓝光射入您的视网膜后,由于它们的混合作用,您感觉到的是绿色。这个现象在艺术上研究的比较深入,例如,黄和蓝混合成为绿色,红和黄混合成为橙色,红和蓝混合成为紫色,红绿蓝三种颜色混合就成为黑色等等,颜色种类和数量不同,混合成的光的颜色色也不同,而红橙黄绿蓝淀紫共同混合,就是白色。
第四:物体表面吸收光的特性不一样,它是由物体的分子结构决定的,黄铜和红铜的区别正是黄铜的分子结构决定了它吸收除黄色外的色光的能力十分强,而红铜则是吸收除红色光的能力十分的强。虽然都是铜,但是着两种铜的分子结构是不一样的,就象金刚石和石墨虽然都是碳原子构成,但结构和质地却大相径庭一样。
第五:物体表面好比一个大筛子,上面有无数七种不同形状的孔,每重孔的形状跟一种“光颗粒”(当然,只是比喻了)的形状相同,黄铜的黄色光形状的孔太少,其他形状的孔多,所以,就把黄光排除在外面了。
就是这样了,兄台可明了??
(微笑)
补充:1 相同的分子(或原子)按照不同的组合方式可以形成不同的物质,比如说同由碳原子构成的金刚石(原子按照网状的构架组合起来)和石墨(原子按照层状的结构组合起来)。而按照不同构架所组合而成的物质对于光的反射效果(衍射、干涉、折射也是一样)是不同的,就象金刚石对光线很通透,但石墨对光线几乎全部吸收。黄铜和红铜的机理也是一样的。您还可以这样理解,一堆砖头(比做构成物质的分子或原子)可以堆砌成一座密不透风的堡垒,也可以盖成满身是孔洞的“蜂窝”式建筑,两者对光的反射效果显然会大相径庭。)
2 从本质上说,物体反射的光色取决与物体本身(尤其是表面)对特定频率的光的能量的吸收特性,而这种特性又由构成构成物体本身的原子或分子的构架所决定。但是这样说明不便于理解。所以我采用了上述的说明方法。)
4 4.1 粒子虽然以几率分布,但这种分布也是有规则的分布,这就是我们可以确定的构架 4.2 波函数和能量式的数学描述到是可以“反映全部”,但却是“从全部的角度反映全部”,这就好比“世界上的男女人数总是一比一,但却仍然未说明自然如何在内部具体调整这个比例的”,所以,用这种宏观概念来说明具体问题按照方法论来讲是不可行的,即是一种实质上无效的说明 4.3 光这种具有波粒两性的物质的本质究竟是什么,这是科学界尚未能解释清楚的问题,光子也是从宏观上为了解决问题而从现象上察觉并提出的概念;4.4 量子理论也更是一个概念性的东西,是为了解决不可知的内因而从宏观上人为引入的概念。光子和量子本身就是因为不能解释内因而引入的人为概念。4.5 还有,如果要想探究“特性本身的内因”,那我也可以说还需要探究“内因的内因”,就象“我们能看见东西是因为有光,但光的内因是因为有太阳,有太阳的内因是因为.....,这样下去就会引发这样近似悖论的问题,“小柯西”先生要是真这样较真,那我们倒是可以把这个问题上升到哲学的层次(笑).......
3 我在此应用明了的说明而非数学式的描述,正想从本质上来说明您提出的问题。光子概念和量子学说本身就是为解释不可宏观研究的光和能量问题而提出的概念性的东西,所以,即便是从光子和能量的深度来讨论这个问题,我的上述说法依然适用,因为我从一开始便把量子层面的问题考虑进去了,但是,其实道理是很明了的,如果用数学式的说教方法反倒把问题搞的“深不可测”。我从您的问题补充中就已经看出----理解问题的本质一定您的首要目的(微笑)

6. 为什么波长不同光的颜色不同

光本无色,所谓颜色只是人不同感光细胞在脑中产生的不同反应,或者说感觉。人眼有三种感光细胞,红绿蓝。每种细胞只对一种波段的光反应敏感。这样当一定波长的光进入眼睛后,有一部分感光细胞兴奋,反应到大脑,我们称之为颜色。红绿蓝三种细胞,故人们定义三原色。其他颜色的波段都在这三种反应敏感区之间。人靠不同颜色感知细胞的反应强度,分辨不同颜色。
电磁波的波长和强度可以有很大的区别,在人可以感受的波长范围内(约380纳米至740纳米),它被称
为可见光,有时也被简称为光。假如我们将一个光源各个波长的强度列在一起,我们就可以获得这个光源的光谱。一个物体的光谱决定这个物体的光学特性,包括它的颜色。不同的光谱可以被人接收为同一个颜色。虽然我们可以将一个颜色定义为所有这些光谱的总和,但是不同的动物所看到的颜色是不同的,不同的人所感受到的颜色也是不同的,因此这个定义是相当主观的。

颜色
调配器一个弥散地反射所有波长的光的表面是白色的,而一个吸收所有波长的光的表面是黑色的。
颜色是人对光的感知,那么黑色就是人对无光的感知,可以说黑色不算是一种真正的颜色。

7. 物体为什么会呈现不同的颜色

不同物质会选择性地吸收特定波长的光,造成反射的光的波长的差异,进入眼后看到不同的颜色

深奥解释:第一:色彩是光线射在视网膜上后,我们所感受到的感觉。随着射在视网膜上的光线的频率的由底到高,我们的感觉由红色开始发生变化直到紫色(红橙黄绿蓝淀紫)。

第二:光在射入您的视网膜前的“经历”是这样的---首先:它从太阳中“产生”后,它是全光谱性质的,即含有各种频率(当然,也可以用波长来分,是一样的,只是频率和波长是两个互为倒数的起到相同作用的指标)的光,更直白点说,是含有红橙黄绿蓝淀紫七种光的“杂光”,正是由于它是七种颜色汇聚而成的杂光,所以是白色的;其次:它射到一个物体上,这是一个关键的步骤,它的一部分频率的光被物体表面吸收,比如,它射到黄铜上,红橙绿蓝淀紫光被吸收,只剩下黄光“幸免遇难”,这个幸免遇难的黄光接着被物体表面反弹(反射)而改变了方向后,射在了你的视网膜上,使你产生了黄色的感觉。

第三:光色的混合是一个要点,就是说,如果光在射到物体表面的时候,被吸收了红橙绿淀紫后,剩下的黄光和蓝光射入您的视网膜后,由于它们的混合作用,您感觉到的是绿色。这个现象在艺术上研究的比较深入,例如,黄和蓝混合成为绿色,红和黄混合成为橙色,红和蓝混合成为紫色,红绿蓝三种颜色混合就成为黑色等等,颜色种类和数量不同,混合成的光的颜色色也不同,而红橙黄绿蓝淀紫共同混合,就是白色。

第四:物体表面吸收光的特性不一样,它是由物体的分子结构决定的,黄铜和红铜的区别正是黄铜的分子结构决定了它吸收除黄色外的色光的能力十分强,而红铜则是吸收除红色光的能力十分的强。虽然都是铜,但是着两种铜的分子结构是不一样的,就象金刚石和石墨虽然都是碳原子构成,但结构和质地却大相径庭一样。

第五:物体表面好比一个大筛子,上面有无数七种不同形状的孔,每重孔的形状跟一种“光颗粒”(当然,只是比喻了)的形状相同,黄铜的黄色光形状的孔太少,其他形状的孔多,所以,就把黄光排除在外面了。

补充:

1 相同的分子(或原子)按照不同的组合方式可以形成不同的物质,比如说同由碳原子构成的金刚石(原子按照网状的构架组合起来)和石墨(原子按照层状的结构组合起来)。而按照不同构架所组合而成的物质对于光的反射效果(衍射、干涉、折射也是一样)是不同的,就象金刚石对光线很通透,但石墨对光线几乎全部吸收。黄铜和红铜的机理也是一样的。您还可以这样理解,一堆砖头(比做构成物质的分子或原子)可以堆砌成一座密不透风的堡垒,也可以盖成满身是孔洞的“蜂窝”式建筑,两者对光的反射效果显然会大相径庭。

2 从本质上说,物体反射的光色取决与物体本身(尤其是表面)对特定频率的光的能量的吸收特性,而这种特性又由构成物体本身的原子或分子的构架所决定。(这样说明不便于理解,故采用了上述的说明方法)
4.1 粒子虽然以几率分布,但这种分布也是有规则的分布,这就是我们可以确定的构架。
4.2 波函数和能量式的数学描述到是可以“反映全部”,但却是“从全部的角度反映全部”,这就好比“世界上的男女人数总是一比一,但却仍然未说明自然如何在内部具体调整这个比例的”,所以,用这种宏观概念来说明具体问题按照方法论来讲是不可行的,即是一种实质上无效的说明。
4.3 光这种具有波粒两性的物质的本质究竟是什么,这是科学界尚未能解释清楚的问题,光子也是从宏观上为了解决问题而从现象上察觉并提出的概念。
4.4 量子理论也更是一个概念性的东西,是为了解决不可知的内因而从宏观上人为引入的概念。光子和量子本身就是因为不能解释内因而引入的人为概念。
4.5 如果要想探究“特性本身的内因”,那也可以说还需要探究“内因的内因”,就象“我们能看见东西是因为有光,但光的内因是因为有太阳,有太阳的内因是因为.....,这样下去就会引发这样近似悖论的问题,“小柯西”先生要是真这样较真,那我们倒是可以把这个问题上升到哲学的层次。

3 在此应用明了的说明而非数学式的描述,正想从本质上来说明您提出的问题。光子概念和量子学说本身就是为解释不可宏观研究的光和能量问题而提出的概念性的东西,所以,即便是从光子和能量的深度来讨论这个问题,上述说法依然适用,因为从一开始俺便把量子层面的问题考虑进去了,但是,其实道理是很明了的,如果用数学式的说教方法反倒把问题搞的“深不可测”。俺从您的问题补充中就已经看出----理解问题的本质一定您的首要目的(微笑)

8. 为物体色试析物体色、光源色、环境色三者之间的关系,并简述物体所以能反射不同色光的原理。

第一章 色彩的物理理论
第一节 色彩原理
1. 光与色
没有光源便没有色彩感觉,人们凭借光才能看见物体的形状、色彩,从而认识客观世界。什么是光呢?从广义上讲,光在物理学上是一种客观存在的物质(而不是物体),它是一种电磁波。电磁波包括宇宙射线、X射线、紫外线、可见光、红外线和无线电波等。它们都各有不同的波长和振动频率。在整个电磁波范围内,并不是所有的光都有色彩,更确切地说,并不是所有的光的色彩我们肉眼都可以分辨。只有波长在 380纳米至 780纳米之间的电磁波才能引起人的色知觉。这段波长的电磁波叫可见光谱,或叫做光。其余波长的电磁波,都是肉眼所看不见的,通称不可见光。如:长于780纳米的电磁波叫红外线,短于380纳米的电磁波叫紫外线。
实际上,阳光的七色是由红、绿、紫三色不同的光波按不同比例混合而成,我们把这红、绿、紫三色光称为三原色光(目前彩色电视所采用的是红、绿、蓝,实际上混合不出所有自然界之色,只是方便而已,但光学一直采用红、绿、蓝为三原色,这里我们可以通过“色图”来表示),国际照明学会规定分别用x、y、z来表示它们之间的百分比。由于是百分比,三者相加必须等于1,故色调在色图中只需用x、y两值即可。将光谱色中各段波长所引起的色调感觉在x、y平面上做成图标时,即得色图。因白色感觉可用等量的红、绿、紫(蓝紫)三色混合而得,故图中愈接近中心的部分,表示愈接近于白色,也就是饱和度愈低;而在边缘曲线部分,则饱和度愈高。因此,图中一定位置相当于物体色的一定色调和一定的饱和度。

1666年,英国物理学家牛顿做了一次非常着名的实验,他用三棱镜将太阳白光分解为红、橙、黄、绿、青、蓝、紫的七色色带。据牛顿推论:太阳的白光是由七色光混合而成,白光通过三棱镜的分解叫做色散,虹就是许多小水滴为太阳白光的色散,各色波长如下:
单位:纳米
可见光谱表:
光的物理性质由光波的振幅和波长两个因素决定。波长的长度差别决定色相的差别,波长相同,而振幅不同,则决定色相明暗的差别。
2.物体色
人们在这个问题上争论颇大,有人认为有固有色,有人认为没有。主张没有的人说:没有光什么物体也不具备颜色,物体之所以有色,是因为不同物质对七色光中不同的色光吸收或反射不同,所以呈现色彩不同。他们又说:绿叶这种物质能反射绿光吸收其他色光,所以看上去是绿的,红花这种东西是能反射红光而吸收其他色光,所以看上去是红的。而主张有固有色的人说:为什么红花照上红光会显得更红,这是因为它本身具有红色素,它的红色已饱和,所以全部反射出来,而将红光照到绿叶上,绿叶会变成黑色,这是因为绿叶中没有红色素,它全部吸收,自然会成为黑色的,而白色纸上任何色素都不具备,照上任何色光它大部分都反射出来。另外白色的棉花因为它不具备任何色素,所以反射全色光,当染上红色素后,其质地没有多大变化,因而反射红光,吸收其他色光。为了免其争论,我们称它是物体色,但要说明物体之所以反射不同色光的原理:
不同物体反射不同色光,为什么?因为不同物体具有不同的反光曲律,这种曲律,人们称为色素。比如说,红色物体,它的曲律能反射红光,也就是说它的曲律是能反射640~750纳米的电磁波,如果红光照到上面,即可产生同步共振的效应,使红光反射回来,只有一部分红光在共振时消耗其能量。所以我们看到它为红色,也称该物体反射红光。如果是其他色光照到上面,因为曲律不同而产生波长的干扰作用,所产生的干扰波不一定是多少,如果是550~600纳米的黄光照在红色物体上,可能会产生类似600~640纳米的干扰波,即类橙色,这就是所谓黄光被吸收。如果是480~550纳米波长的绿光照在红色物体上,可能产生较为紊乱的干扰波,这种干扰波大部分不在可视光波之内,仅有一部分被反射出来产生视知觉,我们说这种绿光波吸收而产生黑灰色的视知觉。如果是白色光照在红色物体上面,只有白光中640~750纳米的光波产生同步共振,其余的光波产生干扰,我们说,这是红光被反射出来,而其余光波被吸收。能反射不同波长的物体,因为其曲律不同而对不同色光产生同步共振,我们称它能反射不同色光。如果是黑色物体,它不能纯净地反射某种色光,也就是说:不能使任何一种色光同步共振,只能反射干扰后的混合型较杂乱的电磁波,所以我们称它为黑色吸光体。黑色之所以吸光,就是因为色光照到它上面不能产生同步共振的返回,所有不同波长电磁波被干扰,干扰后即将光能消耗在干扰之中,产生热量,这就是黑色吸光的作用。而白色物体能将七色光的电磁波大部分同步共振地反射回来,仅有一小部分在共振时消耗其能量,所以,我们称它反光率高,有凉爽感。
这就是物体反射不同色光的原理。
另外,我们知道,光波也是电磁波的一种,因而它同样具备电磁波同性相斥、异性相吸的特性。这又是与色光相同的物体色反射相同色光的又一原因之所在。
任何物体对光都具有吸收、透射、反射、折射的作用。
在可见光谱中,红色光的波长最长,它的穿透性也最强。比如说:清晨的太阳为什么是红的?这是因为清晨的太阳光要照到我们身上需穿过比中午几乎厚三倍的大气层,而且清晨的空气中含有大量水分子。阳光穿过它时,其他色光许多被吸收、折射或反射了,只有红光以巨大的穿透力,顽强地穿过大气层、水蒸气来到地面,在此其间,大部分蓝紫色光都被折射在大气层及水蒸气里,而到达地面上的太阳光大部分是红橙色,所以太阳看上去是红的。
在卫星上看天空本来是漆黑一团,但为什么我们在地球上看天空是蓝色的呢?这就是因为太阳光照到地球上,其中蓝紫色的光因其穿透性最弱而被空气吸收、折射、反射了,这些蓝光散布在空气中,看上去自然是蓝的。而海水为什么是绿的呢?水不是无色透明的吗?这也是因为阳光照入水中,大部分青绿色光折射在水中,所以看上去海水是青绿色的。在空气污染极少的天山,我们发现,近山是绿树,中景山是青蓝色,而远景山则是蓝紫色,故人称“青山绿水”。由于以上原因,我们绘画中就出现了“色彩的透视”,即:近暖、远冷,近实、远虚,近纯、远灰,此处暂不多赘
第二节 色彩的分类与特性
我国古代把黑、白、玄(偏红的黑)称为色,把青、黄、赤称为彩,合称色彩。
现代色彩学,也可以说是西洋色彩学也把色彩分为两大类:
1.无彩色系
无彩色系是指黑和白。试将纯黑逐渐加白,使其由黑、深灰、中灰、浅灰直到纯白,分为11个阶梯,成为明度渐变,做成一个明度色标(也可用于有彩色系),凡明度在0°~3°的色彩称为低调色,4°~6°的色彩称为中调色,7°~10°的色彩称为高调色。
色彩间明度差别的大小,决定明度对比的强弱,3°以内的对比称明度的弱对比,又称短对比。3°~5°的对比称为中对比,又称中调对比。5°以外的对比称为强对比,又称长调对比。
在明度对比中,如果其中面积大,作用也最大的色彩或色组属高调色和另外色的对比属长调对比,整组对比就称为高长调,用这种办法可以把明度对比大体划分为高短调、高中调、高中短调、高中长调、高长调、中短调、中中调、中高短调、中低短调、中长调、中高长调、中低长调、低短调、低长调、低中调、最长调等16种:
一般来说,高调明快,低调朴素,明度对比较强时光感强,形象的清晰程度高;明度对比弱时光感弱,不明朗、模糊不清。明度对比太强时,如最长调,有生硬、空洞、眩目、简单化等感觉,而且有恐怖感。
2.有彩色系
有彩色系有三个基本特征:色相、纯度、明度,在色彩学上也称色彩的三要素、三属性或三特征。
(1)色相:色相是指色彩的相貌,确切地说是依波长来划分色光的相貌。可见色光因波长的不同,给眼睛的色彩感觉也不同,每种波长色光的被感觉就是一种色相。
依色散可分出色相的序列关系,即红、绿、蓝(蓝紫)三原色加间色,即,红、橙、黄、绿、青、蓝、紫。并可在色相环中细分为
(2)纯度:纯度是指色光波长的单纯程度,也有称之为艳度、彩度、鲜度或饱和度。在七色相中各有其纯度,七色光混合即成白光,七色颜料混合成为深灰色;黑白灰属无彩色系,即没有彩度,任何一种单纯的颜色,倘若加入无彩色系任何一色的混合即可降低它的纯度。在七色中除各有各自的最高纯度外,它们之间也有纯度高低之分。我们可以通过一个并列的色散序列色相带,将各色同样等量加灰,使其渐渐变为纯灰,通过实验可以明确看到红色最难,青绿色最容易,这就说明红色纯度最高,而青绿色纯度最低。
(3)明度:明度是指色彩的明亮程度,对光源色来说可以称光度;对物体色来说,除了称明度之外,还可称亮度、深浅程度等。
无论投照光还是反射光,在同一波长中,光波的振幅愈宽,色光的明亮度愈高。在不同波长中,振幅比波长的比数越大,明亮知觉度就越高。
白颜料属于反射率高的物体,在其他颜料中混入白色,可以提高混合色的反射率,也就提高了混合色的明度。混入白色愈多,亮度提高愈多。黑色颜料属于反射率极低的物体。在其他颜料中混入黑色,可以降低混合色的反射率。稍混一些,反射率就明显地降下来,也就降低了混合色的明度;混入黑色愈多,明度降低愈多。灰色属于反射率95%以下与10%以上的色彩,即属中等明度的色彩,黑白与不同明度的灰色,可以构成有秩序的明度序列。
不同色相的光的振幅不同。红色振幅虽宽,但波长也长;黄色虽然振幅与红色相当,但它的波长短。红色的振幅比波长的比数小于黄色的振幅比波长的比数。所以红色较黄色明度要弱。
我们可以将色散带展开,即:紫红、红、橙红、橙、橙黄、黄、黄绿、绿、青绿、青、青蓝、蓝、蓝紫、紫、紫红。使紫红居两端,黄色居中央,向上逐渐加白,可以发现,黄色很快就可变成纯白,而紫色最慢变为纯白。向下逐渐加黑,紫色很快即可变为纯黑,其次为青色,而黄色最慢才变为纯黑。整个表变为W形,这说明黄色明度最强,而紫色最弱,其余类推。
这种现象,通过电脑色谱即可明晰分辨,原理是:太阳光投射到大地上的七色色光中,实际上仅靠其中红、绿、紫这三原色即可混合出自然界所有颜色。而这三原色中的绿色色光占50%,其余两色红光与紫光,约各占25%。但因为紫光光波短,穿透空气时形成的角度大,在它穿越大气层时,一部分蓝紫色光被反复折射在大气层中,这就形成了蓝色天空。而红光光波是可见光波中最长的光波,在它穿越大气层时,与空气形成的角度小,大部分红色光波都能到达地面。所以,实际上到达地面的色光中红光比紫光要多。黄光是由绿光与红光加光混合而成。我们知道,加光混合后新产生的光,要比原两种光的任何一种都亮。其原因是:640~750纳米光波的红光与480~550纳米光波的绿光相混合时形成新的干扰波形,这些波形以不同色相呈现出来,那就是600~640纳米的橙红光,580~600纳米的橙色光,560~580纳米的黄色光,530~560纳米的黄绿色光等。而这些新产生的波形,尤其是黄色光和黄绿色光,它们的振幅与波长之比,较红光和绿光的振幅与波长的比数都大。这就是混合后的加色光要比混合前任何一种原色光亮的原因。所以,实际上我们看到的青光,也是由绿光与紫光加光混合而成,所以它也比混合前的任何一种原色光要亮。这是加光混合的原理。
再看减光混合:
黄光=白光-紫光 (减去一种原色光)
绿光=白光-红光-紫光 (减去两种原色光)
青光=白光-红光 (减去一种原色光)
紫光=白光-红光-绿光 (减去两种原色光)
红光=白光-绿光-紫光 (减去两种原色光)
这样,就形成带形色谱的“W”型,这各色的明亮次序按“W”型排列为:紫<红<橙<黄>黄绿>绿<青绿<青>青蓝>蓝紫>紫。
第三节 色彩的表示
为了在实际工作中更方便地运用色彩,必须将色彩按照一定的规律和秩序排列起来。历史上曾有许多色彩学家作过努力和研究。
1.牛顿色相环
这是较为科学的早期表示方法。后来人们把太阳七色概括为六色,并把它们圈起来,头尾相接,变成六色色环,在三原色与三间色中十分明确的区分开来。
红、黄、蓝三原色是由一个正三角形的三个角所指处(当时误将黄色认为原色,如今只认作减光混合)。而橙、绿、紫也正处于一个倒等边三角形的三个角所指处。
三原色中任何一种原色都是其他两种原色之间色的补色;也可以说,三间色中任何一种间色都是其他两种间色之原色的补色。
2.色立体
色立体是借助于三维空间来表示色相、纯度、明度的概念。如果我们借助地球仪为模型,色彩的关系可以用这样的位置和结构来表示:赤道部分表示纯色相环;南北两极连成的中心轴为无彩色系的明度序列,南极为黑,用S表示,北极为白,用N表示,球心为正灰;南半球为深色系,北半球为明色系;球的表面为清色系;球内为含灰色系(浊色系);球表面任何一个到球中心轴的垂直线上,表示着纯度序列;与中心轴相垂直的圆直径两端表示补色关系。但事实上如果以图5的色彩明度序列表将球包裹起来,可以发现纯度最大的黄色不在赤道上,而是偏向N,其次为青色。纯度最大的紫色也不在赤道上,而是偏向S,这样就构成一个波浪起伏式偏赤道的色球仪。
色立体的用途
(1)色立体相当于一本“配色字典”。每个人都有主观色调,在色彩使用上会局限于某个部分。色立体色谱为你提供了几乎全部色彩体系,它会帮助你丰富色彩词汇,开拓新的色彩思路。
(2)由于各种色彩在色立体中是按一定秩序排列的,色相秩序、纯度秩序、明度秩序都组织得非常严密。它指示着色彩的分类、对比、调和的一些规律。
(3)如果建立一个标准化的色立体谱,这对于色彩的使用和管理将带来很大的方便。只要知道某种色标号,就可在色谱中迅速而正确地找到它。但是色谱也具有若干不可避免的缺点。首先,色谱只能用自己的色料制作,但色料不仅受生产技术的限制,在理论上限制也很大,据色彩学家分析,还不可能用现有的色料印刷出所有的颜色来;其次,印刷的颜色也不可能长期保存不变色。在实用美术中,色立体只能作为配色的工具,科学的工具毕竟不能代替艺术创作。
奥斯特华德色立体
奥斯特华德是德国化学家,他对染料化学做出过很大的贡献,曾经得过诺贝尔奖金。1921年他出版了一本《奥斯特华德色彩图示》,后被称为奥氏色立体。他将各个明度从0.891-0.035分成8份,分别用a、c、e、g、i、l、n、p表示,每个字母分别含白量和黑量(他这种分法是以韦伯的比率为依据的)。以明暗系列为垂直中心轴,并以此作为三角形的一条边,其顶点为纯色,上端为明色,下端为暗色,位于三角中间部分为含灰色。各个色的比例为:纯色量+白+黑= 100%。奥氏运动空间的方法是将纯色、白色、黑色按不同比例分别在旋转盘上涂成扇形,旋转混合,得出混合各种所需的色光,然后再以颜料凭感觉复制。
奥氏色立体的色相环由24色组成,色相环直径两端的色互为补色,以黄、橙、红、紫、青紫(群青)、青(绿蓝)、绿(海绿)、黄绿(叶绿)为8个主色,各主色再分三等分组成24色相环,并用1~24的数字表示。每个色都有色相号/含白量/含黑量。如8ga表示:8号色(红色),g是含白量,由表查得22;a是含黑量,查得是11,结论是浅红色。
他将每片颜色订在一起,形成一个陀螺状的色立体。
孟塞尔色立体
孟塞尔是美国的色彩学家,长期从事美术教育工作。美国早在1915年就出版过《孟塞尔颜色图谱》,1929年和1943年又分别经美国国家标准局和美国光学会修订出版《孟塞尔颜色图册》。最新版本的颜色图册包括两套样品,一套有光泽,一套无光泽。有光泽色谱共包括1450块颜色,附有一套黑白的37块中性灰色,无光泽色谱有1150块颜色,附有32块中性灰色。每块大约1.8×2.1厘米。孟氏色谱是从心理学的角度,根据颜色的视知觉特点所制定的标色系统。目前国际上普遍采用该标色系统作为颜色的分类和标定的办法。孟氏色立体的中心轴无彩色系从白到黑分为11个等级,其色相环主要有10个色相组成:红(R)、黄(Y)、绿(G)、蓝(B)、紫(P)以及它们相互的间色黄红(YR)、绿黄(GY)、蓝绿(BG)、紫蓝(PB)、红紫(RP)。R与RP间为RP+R,RP与P间为P+RP,P与PB间为PB+P,PB与B间为B+PB,B与BG间为BG+B,BG与G间为G+BG,G与GY间为GY+G,GY与Y间为Y+GY,Y与YR间为YR+Y,YR与R间为R+YR。为了作更细的划分,每个色相又分成10个等级。每5种主要色相和中间色相的等级定为5,每种色相都分出2.5、5、7.5、10四个色阶,全图册共分40个色相任何颜色都用色相/明度/纯度(即H/V/G)表示,如5R/4/14表示色相为第5号红色,明度为4,纯度为14,该色为中间明度,纯度为最高的红。(日本1978年12月出版了一套颜色样卡,称新日本颜色系,包括5000块颜色,它是目前国际上最多的颜色图谱。它也按孟塞尔色彩图谱命名,但考虑到孟氏色立体中的40个色相,不能满足实际上的需要,尤其是在R到Y和PB区间。因而又增加了1.25R,6.25R,1.25YR,3.75YR,8.75YR,6.25Y,3.75PB,6.25PB等8个色相,总共48个色相,光值即明度,分为10个等级,每个等级为0.5,即由1~9.5,纯度分14个等级,每级差为1,即由1~14。)
思考题:
试析光与色的关系:
①何为物体色?试析物体色、光源色、环境色三者之间的关系,并简述物体所以能反射不同色光的原理。
②色彩有哪两类?它们各有哪些特征?何为色彩三要素?
③何谓色立体?孟塞尔色立体和奥斯特华德色立体有哪些异同?它们有何实用价值?
作业:
①作黑白明度推移11阶梯序列表。
②按无彩色系明度等级比例任意构成明度对比9个色调。
③制作色相序列,明度序列,纯度序列(可构成在一张图内),要求渐次均匀。(参见彩图19~23;36~37)
第四节 色彩混合
1.三原色(三基色)
何谓三原色?就是说三色中的任何一色,都不能用另外两种原色混合产生,而其他色可由这三色按一定的比例混合出来,这三个独立的色称之为三原色(或三基色)。
牛顿用三棱镜将白色阳光分解得到红、橙、黄、绿、青、蓝、紫七种色光,这七种色光的混合又得白光,因此他认定这七种色光为原色。后来物理学家大卫•鲁伯特进一步发现染料原色只是红、黄、蓝三色,其他颜色都可以由这三种颜色混合而成的。他的这种理论被法国染料学家席弗通过各种染料配合试验所证实。从此,这种三原色理论被人们所公认。1802年生理学家汤麦斯•杨根据人眼的视觉生理特征提出了新的三原色理论。他认为色光的三原色并非红、黄、蓝,而是红、绿、紫。这种理论又被物理学家马克思韦尔证实。他通过物理试验,将红光和绿光混合,这时出现黄光,然后掺入一定比例的紫光,结果出现了白光。此后,人们才开始认识到色光和颜料的原色及其混合规律是有区别的。色光的三原色是红、绿、蓝(蓝紫色),颜料的三原色是红(品红)、黄(柠檬黄)、青(湖蓝)。色光混合变亮,称之谓加色混合。颜料混合变暗,称之谓减色混合。
2.加色混合
从物理光学试验中得出:红、绿、蓝(蓝紫)三种色光是其他色光所混合不出来的。而这三种色光以不同比例的混合几乎可以得出自然界所有的颜色。所以红、绿、蓝(蓝紫)是加色混合最理想的色光三原色。加色混合可得出红光+绿光=黄光;红光+蓝紫光=品红光;蓝紫光+绿光=青光;红光+绿光+蓝紫光=白光。如果改变三原色的混合比例,还可得到其他不同的颜色。如红光与不同比例的绿光混合可以得出橙、黄、黄绿等色;红光与不同比例的蓝紫光混合可以得出品红、红紫、紫红蓝;紫光与不同比例的绿光混合可以得出:绿蓝、青、青绿。如果蓝紫、绿、红三种光按不同比例混合可以得出更多的颜色,一切颜色都可通过加色混合得出。由于加色混合是色光的混合,因此随着不同色光混合量的增加,色光的明度也渐加强。所以也叫加光混合,当全色光混合时则可趋于白色光,它较任何色光都明亮。
加色混合效果是由人的视觉器官来完成的,因此是一种视觉混合。
彩色电视的色彩影像就是应用加色混合原理设计的,彩色景象被分解成红、绿、蓝紫三基色,并分别转变为电信号加以传送,最后在银屏上重新由三基色混合成彩色影像。①如前所述,所有色物体(包括颜料)之所以能显色,是因为物体对色谱中色光选择吸收和反射所致。②“吸收”的部分色光,也就是减去的部分色光。印染染料,绘画颜料、印刷油墨等各色的混合或重叠,都属减色混合。当两种以上的色料相混或重叠时,相当于照在上面的白光中减去各种色料的吸收光,其剩余部分的反射光混合结果就是色料混合和重叠产生的颜色。色料混合种类愈多,白光中被减去吸收光愈多,相应的反射光量也愈少,最后将趋近于黑浊色。这就是减色混合。
过去习惯地把大红、中黄、普蓝称为颜色的三原色,从色彩学上讲,这个概念是不确切的。理想的色料三原色应当是品红(明亮的玫红)、黄(柠黄)、青(湖蓝),因为品红、黄、青混色的范围要比大红、中黄、普蓝宽得多,用减色混合法可得出:
品红+黄=红(白光-绿光-蓝光);
青+黄=绿(白光-红光-蓝光);
青+品红=蓝(白光-红光-绿光);
品红+青+黄=黑(白光-绿光-红光-蓝光)。
从以上两组叠色混色图中可以看出一个问题:加色混合的三原色,恰是减色混合的三间色,而减色混合的三原色又恰是加色混合的三间色。
根据减色混合的原理,品红、黄、青按不同的比例混合,从理论上讲可以混合出一切颜色。因此,品红、黄、青三原色在色彩学上称为一次色;两种不同的原色相混所得的色称为二次色,即间色,两种不同间色相混所得色称为第三次色,也称复色。
4.空间混合
空间混合是指各种颜色的反射光快速地先后刺激或同时刺激人眼。我们说的先后,是指光在人眼中留下的印象在视觉中混合,或同时或几乎同时将信息传入人的大脑皮层,因此人们的感觉是混合型的。其试验,可取一圆盘,一半红、一半绿,当高速旋转后,可以看到盘中色是金黄③。若一半红、一半蓝,当盘高速旋转后,可得蓝紫,彩色电视就是这个原理,实际上荧屏上有许多比例不同的红、绿、蓝紫小色点,但因为过于细小,人眼不易分辨,待传到人的眼中时,印象已在空中混合了,故称空间混合。点彩派也是利用这种原理,电子分色套色印刷也是这个原理。空间混合,也可称并列混合、色彩的并置,其明度是被混合色的平均明度,因此也称为中间混合、中性混合。
色彩的空间混合有下列规律:
1.凡互补色关系的色彩按一定比例的空间混合,可得到无彩色系的灰和有彩色系的灰。如:红与青绿的混合可得到灰、红灰、绿灰;
2.非补色关系的色彩空间混合时,产生二色的中间色。如:红与青混合,可得到红紫、紫、青紫;
3.有彩色系色与无彩色系色混合时,也产生二色的中间色,如:红与白混合时,可得到不同程度的浅红。红与灰的混合,得到不同程度的红灰;
4.色彩在空间混合时所得到的新色,其明度相当于所混合色的中间明度;
5.色彩并置产生空间混合是有条件的。a、混合之色应是细点或细线,同时要求密集状,点与线愈密,混合的效果愈明显。色点的大小,必须在一定的视觉距离之外,才能产生混合。一般为1000倍以外,否则很难达到混合效果。
空间混合有三大特点:
(1)近看色彩丰富,远看色调统一。在不同视觉距离中,可以看到不同的色彩效果;
(2)色彩有颤动感、闪烁感,适于表现光感,印象派画家贯用这种手法;
(3)如果变化各种色彩的比例,少套色可以得到多套色的效果,电子分色印刷就是利用这种原理。
从以上理论可以看出,所谓减色混合,实际也是空间混合的一种形式,因为色料是由许多细小色微粒组成,只不过分子染料较颗粒颜料更细微些罢了。无论是染料的混合和颜料的混合,它们也都是由不同色料混合的颜色,只不过我们肉眼分辨不出,但在放大镜和显微镜下面一望便知,其规律是相同的。所以,也可以说,空间混合也是放大了颗粒的减色混合,它的色光,也是减色混合的平均值。
5.补色
凡两种色光相加呈现白光,两种颜色相混呈现灰黑色,那么这两种色光和这两种颜色即互为补色。补色的位置,在色相环上属一直径的两端,也就是对顶角的位置。
这里要指出:从王爱军先生将孟塞尔色立体中的互补色在二维坐标中显示可以看出,这多对互补色的连接线在通过中心轴时,并没有相交于5号灰的中心,而是相交在5~6号之间,出现有半度之差,这是为什么呢?其原因是孟塞尔色立体是在心理学的基础上建立起来的,而没有完全借助物理测定,这就是心理与物理之间差异之所在,感知并不能完全代替科学,况且心理也是因人而异的。按照歌德的理论,色料与色光有不同的明度,如果按平均色彩的面积作补色,不能混出五级灰,平均比量的色光也不能混出白光,所以他将各色比量改为黄3、橙4、红6、紫9、青8、绿6,按这种的比量的色光才能混出白光,同样按这样比量颜料作补色混合而得到五级灰,按这样坐标补色交叉线才能通过5号灰的中心。
其次,互补色相混,原则上可得到中间五号黑灰,但互补色色料的混合实际上所得的黑灰是有彩黑灰,而不同于黑白二色料混合后所得到的中性5号黑灰。为什么?解释是:因互补色色料混合后所得的黑灰是由无数细小的互补色颗粒组成,用赫林的四色对立学说去解释,这些小颗粒对人眼视网膜中视锥细胞的补色感光视素(或红—绿或黄—蓝)作空间混合的感知。而黑白二中性色料的混合所得的五号中性灰,是由无数黑、白小颗粒,只对人眼视网膜上视杆细胞中黑—白视素作空间混合的感知,所以

9. 人类看到的物体为什么是不同的颜色

人类看到不同的物体有不同的颜色,主要有两种原因。一是物体本身在光的作用下,产生了不同的颜色;二是人的视网膜有两种细胞能产生视觉,让人类能够分辨出不同的颜色。这两个缺一不可,物体没有颜色我们就看不到,人类没有视觉也就分辨不了颜色。就像牛、羊一类的家畜,物体有颜色可它们分辨不出来。

3、物体本身

在自然界中,只有少部分物体能自主发光,其他的都是在反射光。反射光的同时,会散发出不同的频率,而这些频率就形成了各种颜色。之后就是看感光器官了,动物感光器官强大,就能感受到不同的光;弱小就只能看到黑白,像是家畜一类的,就是如此。

10. 为什么物体吸收别的颜色的光,而反射自己颜色的光

这是由组成物体的微观粒子决定的,每种微粒都有自己的光学特性,即只反射特定颜色的光。例如,钠离子和氯离子在溶液里里是无色,也就是不反射任何颜色的光。而铜离子和硫酸根离子在溶液则反射蓝色的光。这是液体,同样,固体和气体的光学特性也是同样的道理。

热点内容
为什么都说小米手机返修率高 发布:2025-02-02 09:39:00 浏览:549
为什么做事能力不好 发布:2025-02-02 09:37:42 浏览:740
为什么杂牌led灯那么便宜 发布:2025-02-02 09:33:28 浏览:569
华为荣耀手机为什么微信视频来电无提示 发布:2025-02-02 09:33:28 浏览:475
配速大于每公里跑的时间是为什么 发布:2025-02-02 09:29:09 浏览:127
苹果解锁开关为什么点不开 发布:2025-02-02 09:24:48 浏览:233
冬天晚上为什么看不见北斗星 发布:2025-02-02 09:21:37 浏览:789
6岁男孩为什么晚上咳嗽厉害 发布:2025-02-02 09:09:07 浏览:28
天景山小区房价为什么便宜 发布:2025-02-02 08:55:00 浏览:211
抖音里为什么找不到自己 发布:2025-02-02 08:44:49 浏览:943