为什么铋晶体做出来没有颜色
1. 铋晶体什么颜色最好
通常来说铋晶体是五彩的,它有一种五彩的物理光,所以应该是这种颜色是最好看的。
2. 我想问问铋晶体可以佩戴吗
一般情况下铋晶体是可以佩戴,铋晶体是无毒的,也不会对人体做成任何危害。
铋晶体是融化的高纯度金属铋在缓慢冷却时结晶所得到的,由于具有特殊的几何形状,在国外有专门的爱好者群体收藏铋晶体,有一些人会把铋晶体做成首饰佩戴。至今国内现在还鲜有铋晶体收藏家。
更多关于铋晶体可以佩戴吗,进入:https://www.abcgonglue.com/ask/f39f261615826672.html?zd查看更多内容
3. 铋晶体有毒吗知乎
无毒的,也不会对人体做成任何危害,一直以来连一宗相关的个案都没有
4. 铋晶体可以摆在家里吗
铋晶体可以摆在家里。
铋晶体是一种原子晶体,是熔化的高纯度金属铋在缓慢冷却时结晶所得到的。铋晶体虽然有放射性,但其辐射性非常小,就连日常使用的手机辐射都比铋晶体高。但铋元素是一种微毒的元素,所以注意不要吃或舔铋晶体,也不要被铋晶体划伤皮肤等。
铋晶体在制作过程中会被氧化,其氧化层在不断增厚的同时会吸收不同波长的光线而导致不断变色,最后形成颜色绚丽多彩的氧化膜。铋晶体的形状也是不定的,会随制作容器的形状大小而变化。铋晶体的这些特性,使得它具有把玩、欣赏、收藏等价值,进而成为大众新的收藏选择。大块高质量的铋晶体可以摆放在室内,作为摆件收藏,其光彩夺目的效果不亚于古物文玩(因其并不广为人知,所以还会显得有独特的科技感),而小块的铋晶体则可以用来制作首饰,像戒指、项链等,也可以放入收藏盒珍藏或送礼等。
5. 制作铋晶体需要哪些防护措施和材料,这个实验危险性如何
准备和提示
为了培养出高品质的晶体,必须使用纯度大于或等于99.99%的铋金属,
这种纯度更适合于培养的高品质的金属晶体。
影响铋晶体质量和大小的重要因素是冷却时间。通过使铋单质从熔化状态缓慢冷却并且固化,或许就能够生长出较大的晶体。
铋的熔点与其它金属单质相比相对较低,只有271℃(520°F),使用一个小型的丙烷喷灯或电炉就可以轻松的将其熔化。但是,值得注意的是,这仍旧是非常烫的熔融金属,就像任何液体一样容易流动和飞溅,并可能导致严重的烧伤。
根据使用的铋的体积,在各种容器中放入适量的铋单质,同时保持它的熔化状态。一块中等大小钢板和量杯适合用来制作铋晶体。
步骤
第1步:熔化铋
将铋单质放入一个钢制量杯中并放置在高温的热板上。
作为铋的熔液,该液体的表面暴露在空气中并被迅速氧化,因为高温和氧气形成灰色的表层,这是正常的。
第2步:浇注熔融铋
铋熔化后,将液体铋缓慢地,小心地倒到另一个干净并且预热过的钢制量杯中。通过将铋熔液转移到新的容器中,可以除去影响晶体生长的已经氧化的表面。
将铋液体倒进新的容器之后,可以观察到残余的铋的氧化物仍然留在原容器中。
第3步:使液态铋冷却
将铋放置在新的容器中,绝缘和耐热的表面冷却后开始凝固。将盛有铋的容器放已回到关闭电源的热板上, 通过余热使它缓慢降温至室温。
一段时间后,新容器中的铋出现一层清晰可见的新的氧化层。新的氧化层并不如上一层那么厚。新的氧化层在不断增厚的同时将会吸收不同波长的光线导致不断变色。因为相同的原因所以铋晶体表面会有那么多种颜色。
第4步:倒出多余的铋
当铋完全凝固之后,将多余的液态铋倒入另一个容器中。不要让铋充分固化;如果不倒出多余的液体,晶体将会成为被困在量杯中的金属块。通常铋晶体生长时间的长短会导致晶体的大小变化。但是,如果等待时间太长,尚未形成晶体的过量液态铋将凝固并影响已经形成的结晶。什么时候倒出多余的液态铋并没有固定的时间限制,因为它取决于现场的实验条件。通过照明设备我们可以观察到液态铋的即时状态。如果在液体表面上的还会有波纹,并且铋仍是液态。随着越来越多的铋凝固,波纹将会越来越小并且晶体变得可见。
请注意,不能经常移动正在凝固的液态铋,因为它会影响晶体的形成:将会有很多小的铋晶体出现,并不会生成大的单晶。
可能需要多次尝试才能获得良好的晶体。如果等待太久,溶液凝固只能重新熔化,然后再试一次。甚至可以尝试使用倒出过量的液态铋在二级容器中以形成新的晶体。
第5步:取出晶体
过滤出多余的液态铋之后,在铋晶体生长的容器内应该可以看到生长完成的铋晶体。在铋晶体暴露于空气中的几分钟内其表面将会出现很多颜色。铋晶体可能会被卡在容器内,或者会有粘稠的液态铋附着在铋晶体上。待它们冷却之后可以轻松地折断它们并从容器中取出。容器的内表面会导致晶体出现固有的缺陷,因为总是会有晶体附着在容器的内表面上。避免这一缺陷的方法是通过使用一颗晶种悬浮在熔融的液态铋上作为晶体生长过程中的成核点。之后,只需要将铋晶体从溶液中提出,而不是到处过量的液态铋。晶种放置时间不宜过长,否则可能会与容器中其他晶体融合导致过大无法取出。
6. 铋晶体的制作
为了培养出高品质的晶体,必须使用纯度大于或等于99.99%的铋金属,这种纯度更适合于培养的高品质的金属晶体。
影响铋晶体质量和大小的重要因素是冷却时间。通过使铋单质从熔化状态缓慢冷却并且固化,或许就能够生长出较大的晶体。
铋的熔点与其它金属单质相比相对较低,只有271℃(520°F),使用一个小型的丙烷喷灯或电炉就可以轻松的将其熔化。但是,值得注意的是,这仍旧是非常烫的熔融金属,就像任何液体一样容易流动和飞溅,并可能导致严重的烧伤。
根据使用的铋的体积,在各种容器中放入适量的铋单质,同时保持它的熔化状态。一块中等大小钢板和量杯适合用来制作铋晶体。 第1步:熔化铋将铋单质放入一个钢制量杯中并放置在高温的热板上。
作为铋的熔液,该液体的表面暴露在空气中并被迅速氧化,因为高温和氧气形成灰色的表层,这是正常的。
第2步:浇注熔融铋铋熔化后,将液体铋缓慢地,小心地倒到另一个干净并且预热过的钢制量杯中。通过将铋熔液转移到新的容器中,可以除去影响晶体生长的已经氧化的表面。
将铋液体倒进新的容器之后,可以观察到残余的铋的氧化物仍然留在原容器中。
第3步:使液态铋冷却将铋放置在新的容器中,绝缘和耐热的表面冷却后开始凝固。将盛有铋的容器放已回到关闭电源的热板上, 通过余热使它缓慢降温至室温。
一段时间后,新容器中的铋出现一层清晰可见的新的氧化层。新的氧化层并不如上一层那么厚。新的氧化层在不断增厚的同时将会吸收不同波长的光线导致不断变色。因为相同的原因所以铋晶体表面会有那么多种颜色。
第4步:倒出多余的铋当铋完全凝固之后,将多余的液态铋倒入另一个容器中。不要让铋充分固化;如果不倒出多余的液体,晶体将会成为被困在量杯中的金属块。通常铋晶体生长时间的长短会导致晶体的大小变化。但是,如果等待时间太长,尚未形成晶体的过量液态铋将凝固并影响已经形成的结晶。什么时候倒出多余的液态铋并没有固定的时间限制,因为它取决于现场的实验条件。通过照明设备我们可以观察到液态铋的即时状态。如果在液体表面上的还会有波纹,并且铋仍是液态。随着越来越多的铋凝固,波纹将会越来越小并且晶体变得可见。请注意,不能经常移动正在凝固的液态铋,因为它会影响晶体的形成:将会有很多小的铋晶体出现,并不会生成大的单晶。可能需要多次尝试才能获得良好的晶体。如果等待太久,溶液凝固只能重新熔化,然后再试一次。甚至可以尝试使用倒出过量的液态铋在二级容器中以形成新的晶体。
第5步:取出晶体过滤出多余的液态铋之后,在铋晶体生长的容器内应该可以看到生长完成的铋晶体。在铋晶体暴露于空气中的几分钟内其表面将会出现很多颜色。铋晶体可能会被卡在容器内,或者会有粘稠的液态铋附着在铋晶体上。待它们冷却之后可以轻松地折断它们并从容器中取出。容器的内表面会导致晶体出现固有的缺陷,因为总是会有晶体附着在容器的内表面上。避免这一缺陷的方法是通过使用一颗晶种悬浮在熔融的液态铋上作为晶体生长过程中的成核点。之后,只需要将铋晶体从溶液中提出,而不是到处过量的液态铋。晶种放置时间不宜过长,否则可能会与容器中其他晶体融合导致过大无法取出。
7. 铋晶体的简介
晶体铋是融化的高纯度金属铋在缓慢冷却时结晶所得到的,密度大约在9.8 克/立方厘米左右,有着复杂而规则的形状。晶体铋在制作过程中会被氧化,氧化膜的厚度不同会决定所反射的光的颜色,从而形成多种颜色的氧化膜,显得十分耀眼。晶体铋的形状不定,随制作时容器的大小而决定,一般大小在1~15厘米之间。
8. 为什么离子脉冲电离室可测入射粒子的能量,但不能做快计数
能够指示、记录和测量核辐射的材料或装置。辐射和核辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量。核辐射探测器是核物理、粒子物理研究及辐射应用中不可缺少的工具和手段。按照记录方式,核辐射探测器大体上分为计数器和径迹室两大类。计数器以电脉冲的形式记录、分析辐射产生的某种信息。计数器的种类有气体电离探测器、多丝室和漂移室、半导体探测器、闪烁计数器和切伦科夫计数器等。气体电离探测器通过收集射线在气体中产生的电离电荷来测量核辐射。主要类型有电离室、正比计数器和盖革计数器。它们的结构相似,一般都是具有两个电极的圆筒状容器,充有某种气体,电极间加电压,差别是工作电压范围不同。电离室工作电压较低,直接收集射线在气体中原始产生的离子对。其输出脉冲幅度较小,上升时间较快,可用于辐射剂量测量和能谱测量。正比计数器的工作电压较高,能使在电场中高速运动的原始离子产生的离子对,在电极上收集到比原始离子对要多得多的离子对(即气体放大作用),从而得到较高的输出脉冲。脉冲幅度正比于入射粒子损失的能量,适于作能谱测量。盖革计数器又称盖革-弥勒计数器或G-M计数器,它的工作电压更高,出现多次电离过程,因此输出脉冲的幅度很高,已不再正比于原始电离的离子对数,可以不经放大直接被记录。它只能测量粒子数目而不能测量能量,完成一次脉冲计数的时间较长。多丝室和漂移室这是正比计数器的变型。既有计数功能,还可以分辨带电粒子经过的区域。多丝室有许多平行的电极丝,处于正比计数器的工作状态。每一根丝及其邻近空间相当于一个探测器,后面与一个记录仪器连接。因此只有当被探测的粒子进入该丝邻近的空间,与此相关的记录仪器才记录一次事件。为了减少电极丝的数目,可从测量离子漂移到丝的时间来确定离子产生的部位,这就要有另一探测器给出一起始信号并大致规定了事件发生的部位,根据这种原理制成的计数装置称为漂移室,它具有更好的位置分辨率(达50微米),但允许的计数率不如多丝室高。半导体探测器辐射在半导体中产生的载流子(电子和空穴),在反向偏压电场下被收集,由产生的电脉冲信号来测量核辐射。常用硅、锗做半导体材料,主要有三种类型:①在n型单晶上喷涂一层金膜的面垒型;②在电阻率较高的p型硅片上扩散进一层能提供电子的杂质的扩散结型;③在p型锗(或硅)的表面喷涂一薄层金属锂后并进行漂移的锂漂移型。高纯锗探测器有较高的能量分辨率,对γ辐射探测效率高,可在室温下保存,应用广泛。砷化镓、碲化镉、碘化汞等材料也有应用。闪烁计数器通过带电粒子打在闪烁体上,使原子(分子)电离、激发,在退激过程中发光,经过光电器件(如光电倍增管)将光信号变成可测的电信号来测量核辐射。闪烁计数器分辨时间短、效率高,还可根据电信号的大小测定粒子的能量。闪烁体可分三大类:①无机闪烁体,常见的有用铊(Tl)激活的碘化钠NaI(Tl)和碘化铯CsI(Tl)晶体,它们对电子、γ辐射灵敏,发光效率高,有较好的能量分辨率,但光衰减时间较长;锗酸铋晶体密度大,发光效率高,因而对高能电子、γ辐射探测十分有效。其他如用银(Ag)激活的硫化锌ZnS(Ag)主要用来探测α粒子;玻璃闪烁体可以测量α粒子、低能X辐射,加入载体后可测量中子;氟化钡(BaF2)密度大,有荧光成分,既适合于能量测量,又适合于时间测量。②有机闪烁体,包括塑料、液体和晶体(如蒽、茋等),前两种使用普遍。由于它们的光衰减时间短(2~3纳秒,快塑料闪烁体可小于1纳秒),常用在时间测量中。它们对带电粒子的探测效率将近百分之百。③气体闪烁体,包括氙、氦等惰性气体,发光效率不高,但光衰减时间较短(<10纳秒)。切伦科夫计数器高速带电粒子在透明介质中的运动速度超过光在该介质中的运动速度时,则会产生切伦科夫辐射,其辐射角与粒子速度有关,因此提供了一种测量带电粒子速度的探测器。此类探测器常和光电倍增管配合使用;可分为阈式(只记录大于某一速度的粒子)和微分式(只选择某一确定速度的粒子)两种。除上述常用的几种计数器外,还有气体正比闪烁室、自猝灭流光计数器,都是近期出现的气体探测器,输出脉冲幅度大,时间特性好。电磁量能器(或簇射计数器)及强子量能器可分别测量高能电子、γ辐射或强子(见基本粒子)的能量。穿越辐射计数器为极高能带电粒子的鉴别提供了途径。径迹室通过记录、分析辐射产生的径迹图象测量核辐射。主要种类有核乳胶、云室和泡室、火花室和流光室、固体径迹探测器。核乳胶能记录带电粒子单个径迹的照相乳胶。入射粒子在乳胶中形成潜影中心,经过化学处理后记录下粒子径迹,可在显微镜下观察。它有极佳的位置分辨本领(1微米),阻止本领大,功用连续而灵敏。云室和泡室使入射粒子产生的离子集团在过饱和蒸气中形成冷凝中心而结成液滴(云室),在过热液体中形成气化中心而变成气泡(泡室),用照相方法记录,使带电粒子的径迹可见。泡室有较好的位置分辨率(好的可达10微米),本身又是靶,目前常以泡室为顶点探测器配合计数器一起使用。火花室和流光室这些装置都需要较高的电压,当粒子进入装置产生电离时,离子在强电场下运动,形成多次电离,增殖很快,多次电离过程中先产生流光,后产生火花,使带电粒子的径迹成为可见。流光室具有较好的时间特性。它们都具有较好的空间分辨率(约200微米)。除了可用照相记录粒子径迹外,还可记录电脉冲信号,作为计数器用。固体径迹探测器重带电粒子打在诸如云母、塑料一类材料上,沿路径产生损伤,经过化学处理(蚀刻)后,将损伤扩大成可在显微镜下观察的空洞,适于探测重核。由许多类型的探测器、磁铁、电子仪器、计算机等组成的辐射谱仪,可获得多种物理信息,是近代核物理及粒子探测的发展趋势。
9. 有没有什么好玩又简单的科学小实验
有瓶子赛跑、带电的报纸、胡椒粉与盐巴的分离、带电的气球、可爱的浮水印、分合的水流、漂浮的针、神奇的牙签、有孔纸片托水、手绢的秘密。
以下介绍瓶子赛跑:
瓶子赛跑总结:两杯杯底相对,用胶带缠起来。小锅中倒穰1杯水。倒入3杯的白糖。小火边煮,边搅拌至糖融化。放凉。放入毛根,毛根需泡在水的中间,四周不可触碰到。可以看到结晶慢慢变大的过程。
1、两杯杯底相对,用胶带缠起来。
10. 铋晶体有辐射吗
铋晶体有微放射性。
铋晶体是融化的高纯度金属铋在缓慢冷却时结晶所得到的。铋在元素周期表中原子序数为83,属VA族金属元素,元素符号Bi,晶体铋一般有复杂而规则的形状。
铋晶体的性质:
晶体铋是融化的高纯度金属铋在缓慢冷却时结晶所得到的,密度大约在9.8 克/立方厘米左右,有着复杂而规则的形状。
晶体铋在制作过程中会被氧化,氧化膜的厚度不同会决定所反射的光的颜色,从而形成多种颜色的氧化膜,显得十分耀眼。晶体铋的形状不定,随制作时容器的大小而决定,一般大小在1~15厘米之间。