为什么眼睛能看清事物
① 眼睛为什么能看到东西
在人类眼球的最外面,是一层无色透明的角膜,如同照相机的镜头。由于它经常受到泪水的冲洗,因此总显得水汪汪的,一尘不染。眼球的中央有个小圆孔叫瞳孔,外界的光线通过它进入到眼球底部的视网膜上。照相机在拍摄时,根据光线的明暗,需要随时调整光圈。瞳孔也一样:当光线太强时,瞳孔会慢慢缩小,挡住过多的亮光;当光线太弱时,瞳孔就会自动放大,以便让尽可能多的光线进入。照相机中的胶卷,是最后感光成像的部位,人眼的视网膜也具有类似的功能。视网膜上有无数感光细胞,当它们接收到光的刺激信号后,会将信号转变为神经冲动,通过视神经的传递,传到大脑皮层的视觉中心。这样,人就能真实地感受到外界万千事物的形象和色彩了。
② 为什么人的眼睛能看到世界,看到颜色
能看见颜色表示人眼睛可以接收到一定频率的电磁波
电磁波中的可见光由于自身的频率不同,所产生的颜色也就不同
几世纪以来,颜色本身就是一个难解的谜题。举例子来说,苏格拉底就曾经假设说“火”之源起,乃是因眼睛结合了对象本身的“白”(whiteness)所产生的颜色。之后,牛顿更探索光与色彩之间的关系;其后历经许多科学研究,终于在20世纪确认了光波与色彩感应之间的绝对关系。
如今,色彩调和与色彩调性方面的研究信息,直接影响了艺术家、设计师和广告AE人员。本篇关于色彩理论的指南,旨在探索如何于网站上有效使用色彩,同时也提供了许多色彩调和技巧,让您善用色彩来驾驭网站设计。
色彩学
我们能看到颜色是靠三个元素相互作用而成:光源、物体的反射特性、以及人体视网膜和脑部视觉皮质区对光波的处理方式。不管我们使用哪种媒材来作业 -- 绘画、印刷或网络 -- 我们都得依赖上述过程才能有效使用颜色。 色彩的排列 -- 彩虹
十七世纪末期,牛顿证明了色彩并非存在于物体本身,而是光作用的结果,且只要将可视光谱上的长短光波结合起来即可形成白光。这些可视光的波长可对应到七个不同的颜色:红、橙、黄、绿、蓝、靛、紫。
牛顿在实验中所分离出来的可视光谱其实才占了所有电磁光谱的一小部分,整个光谱范围从分为“短频、长波区”(例如收音机调频)到“高频、短波区”(例如 X 光)。可视光谱的区域是介于红外线与紫外线之间,波长约为 400nm (紫色) 到 700nm (红色) 之间。虽然牛顿证明这些光波结合在一起即形成白光,但其实只需要红、绿、蓝三光波就可以产生白光。
光的吸收与反射
当光波投射在物体身上后,该物质会传送、吸收或反射不同部分的光波。根据不同物体的特性以及它本身的原子构造,它可能反射了绿光但吸收了其它的波长。这时候人们的视网膜和脑部视觉皮质区会处理此一反射光,然后形成我们所看到的颜色。
艺术家和设计师将颜色复制到画布或纸张上的时候,他们便是仿真此一过程,利用颜料吸收了某个部分的光波、反射出其它光波。例如要产生绿色,我们可使用会吸收红、蓝光波的颜料即可。此一过程是所有绘画与印刷媒体的色彩模式基础。
一切靠眼睛
当然,不论是反射自物体或是发射自光源本身,我们处理光波的能力都是靠视网膜和脑部的视觉皮质区。视网膜内有三个接收器(或者说是锥细胞)可响应某些光波的频率。红色锥细胞能感应低频率的波长,绿色锥细胞反应的是中频率的波长,蓝色锥细胞反应的是高频率的波长。这些锥细胞的运作并非二元性的,而是类似频道一样,可将刺激分别传达至脑部的视觉皮质区,经过处理后才产生出我们所看到的颜色。
为了产出特定颜色,艺术家/设计师们必须靠着增减光波的方式,让人体内的视觉接收器只反应到某些光波。至于应该用加法或减法原理,则要看你使用何种材质来表现你的作品了。色彩模式与色彩管理 设计师处理颜色的方法通常有两种:一、加色法,混合不同颜色的光波以形成白光;二、减色法,使用颜料来减少光波。传统的艺术家所使用的色盘和 CMYK 系统都是减色法模式。在网站上,我们所面对的是光的投射,而不是从物体上反射回来的光,所以使用的是加色法模式,我们称它为RGB。
加色法
在大自然中,我们所看到的光波是经过物体反射进入我们的视网膜,但产生色彩的方式不仅只这一种。例如,舞台灯光是利用白光穿过有色滤镜来产生不同的色光。计算机屏幕也是使用投射光波的方式,但不同的是它借由让电子光枪发光投射到含磷的屏幕来产生色光。这些电子光枪可以发出三种颜色:红、绿、蓝。借由这三种色光,计算机屏幕可制作出完整的光谱。这就是大家所熟知的 RGB 色系。
在 RGB 系统中,设计师也可以透过混合三原色的方式做出一个光谱。混合任两个原色,就会产生三个次原色:青、洋红、黄。如前面所说的,将光的三原色加在一起就可以做出白光。所以,如果一个 RGB 的值为 255,255,255 则表示为白色。如果完全拿掉这三原色的光 (RGB: 0,0,0) 则产生黑色。
减色法
RGB 模式的相反模式就是 CMYK 模式,也就是使用减少光波的方式来产生颜色。由于物体颜色来自于反射的光波,此一系统乃使用三原色来吸收物体的红、绿或蓝光。例如,如果你减少了红光,那么多余的绿色波和蓝色波就会产生青色。用来除去红光、反射绿、蓝光的颜料就会显示青色。相同的,平面印刷设计师会使用洋红来吸收掉一部份的绿光,以及使用黄光来吸收掉一部份的蓝光。 这样一来,我们很明显的可以知道 CYMK 模式中所使用的三原色就是 RGB 模式中的次颜色,反之亦同。再者,如果将红、绿、蓝光混合在一起形成白光,那么就表示将青、洋红、黄三色的颜料混合在一起就会产生黑色,因为三原色的光波都将被颜料所吸收了。然而受限于颜料和印刷系统的因素,混合青、洋红、黄并无法完全吸收掉所有的光波。因此实际上还必须加上一个黑色才能完成,所以就产生了 CMYK 里面的 K 元素了。
色彩管理
由于有这两套不同的复制颜色方式,设计师若必须同时创作数字与印刷影像可就伤脑筋了。除了对应加色法和减色法之间的困难外,RGB 和 CMYK可使用的色彩范围差异也相当大。因此对跨媒体设计师而言,拥有一套可根据输出设备做色系转换的色彩管理系统可减轻不少头痛问题。色彩管理系统可包含在操作系统,某些应用软件之中。
色彩调和
视觉设计最大的挑战之一便是找出有效的调和色彩,让色系既不过于单调,也不过于夸大。想了解色彩平衡之间的关系,可从了解色环开始着手。色环呈现出某一色彩模式中所有可能的色相 每个色彩模式都包含了一组三原色,然后经由这一组三原色的相互混合而产生不同的颜色。在传统色彩学中,三原色指的是蓝、红、黄;而在 RGB 色彩模式中,色光的三原色是指红、绿、蓝。任何两个色光的组合会产生一组次颜色。三次色则是混合了原色与次色,或者是混合两种次原色所产生。我们用色环来呈现颜色的逻辑性。你可以从下面的图中看出, RGB 的色环和传统艺术家们所使用的色环是很不一样的。
同色调和:单一颜色,只是深浅、色调和明暗度不同。 近似色调和:使用邻近的颜色或在色环上很接近的颜色做调和。
互补色调和:使用色环上两个相对的颜色做调和。这样的颜色组合通常可以提供最大程度的对比感觉,但若过份使用使会流于夸大。
对比色调和:使用一种颜色,再加上其互补色旁边的两个颜色做调和。对比色调和能提供比互补色调和较柔和的对比。
三角调和:使用色环上三个等距离颜色。
双互补调和:使用两组 (共四色) 互补颜色。
在探索色彩调和的时候,通常最好从纯色下手,然后再尝试不同程度的渲染、色调和明暗度。接着你可使用网站仿真图先行测试某颜色组合的视觉特效。记得,对比的重要性不只是在于为了吸引人而设计;它也可能帮助或妨碍网站的阅读性。
色彩所传达的意义
当我们在检视色彩的科学本质和色彩调和的美学考量时,我们发现感官在色彩运用上扮演了很重要的角色。除了感官反应与辨识调和色彩外,人类内在对色彩的反应还有更深层的一面。色彩能引发强烈的生理/心理共鸣,不管是正面或负面。当你在选定颜色组合时,请确定你所选择的颜色能引起适当的回响。
色彩的生理反应
虽然并没有直接证据显示色彩能引发特定反应,但是研究显示,某些颜色确实能够引起一些生理上的反应。例如,红色就是一种非常刺激的颜色,往往会令人心跳加快、呼吸急促。所以,红色非常适合用在需要引起注意和强调的时候,但若用在背景颜色的时候可能显得过于强烈。相同地,黄色也能引起注意,但因为其反射性太强,容易造成眼睛的疲劳和不舒服。另外一方面,蓝色对神经系统具有放松的效果,且根据一些研究显示,以蓝色当背景还能增加生产力。但是,如果你的产品与食物有关,千万不要用蓝色作为背景颜色,因为蓝色可是会抑制人们的胃口喔。
色彩的象征
色彩所象征的意义有时候跟大自然中的事物有关。例如,天空与太阳的颜色所产生的联想举世接然。然而,大部分的色彩意义都跟民族文化有关,例如,政治、宗教、神话或社会结构等 -- 这些因素可能会随着时间与地域的不同而产生差异。若你设计的网站是针对国外地区,那你可千万得小心,同一颜色在不同文化可能会有南辕北辙的效果。另外,大部分的颜色都同时具有正面和负面的联想。你可以运用色彩的质量和饱和度的不同,或者是用混合两个颜色的方式来强调某个特别的涵义。
一般在西方的文化中,色彩所传达的涵义为:
红色:热情、浪漫、火焰、暴力、侵略。红色在很多文化中代表的是停止的讯号,用于警告或禁止一些动作。
紫色:创造、谜、忠诚、神秘、稀有。紫色在某些文化中与死亡有关。
蓝色:忠诚、安全、保守、宁静、冷漠、悲伤。
绿色:自然、稳定、成长、忌妒。在北美文化中,绿色代表的是“行”,与环保意识有关,也经常被连结到有关财政方面的事物。
黄色:明亮、光辉、疾病、懦弱。
黑色:能力、精致、现代感、死亡、病态、邪恶。
白色:纯洁、天真、洁净、真理、和平、冷淡、贫乏。白色在中华文化中也代表着死亡的颜色。
选择最恰当的色彩组合
替网站选对颜色可不是一件容易的事;很多公司还特别聘请专业咨询人员,使其色彩组合能搭配、强化整体的品牌形象。但是,如果你自己就已经具有色彩调和感,并且了解某些颜色可能会引起什么样的反应,你只需照着你的方法进行,开发出有效的色彩组合。在你开始找寻对应的颜色之前,你必须先很清楚你网站所要传达的讯息和目标。一但你了解要传达的讯息后,就可开始进行调色工作了。在过程中,你免不了要不断地试验混合颜色,这是一个极具创意的过程。别害怕使用大胆的颜色组合,但在将你的产品公诸于世之前,记得要经过充分的测试喔!
③ 人眼为什么能看见东西
我们生活的世界是如此的丰富多彩,绚丽的大自然,熙攘的人群,高耸的摩天大厦,而正是由于有了眼睛,我们才能看见周围的东西,因此有人把眼睛叫做心灵的窗户。假如我们没有了眼睛,那么这个世界将会变得漆黑,原本的一切都会在眼前失去踪影,我们只有生活在一片黑暗之中。但是为什么人们的眼睛能看见东西呢?这还需要从眼睛的构造上讲起。
你肯定见过照相机吧!如果调整焦距,轻轻一按快门,“咔嚓”一声,绚丽的风景就被拍在底片上了,但是你们知不知道,照相机原本就是根据眼睛的结构被发明的。眼睛最主要的地方是眼球。顾名思义,人们的眼球是个球体,好像装满水的水晶球,眼球的眼球壁分三层。最外层是巩膜,巩膜有一定的硬度能够保护眼球,就像照相机的外壳,在巩膜的前面,有一部分是透明的,称为角膜。透过我们的角膜,我们能够看到棕色虹膜,有些人把它称为“黑眼球”,但它不过是一层薄膜,并且在虹膜中心有一圆孔,顾名思义就是瞳孔,它可以扩大也百丁以缩小,就好像一道闸门,能够调节进入眼睛光线的含量。眼球壁的中间层是脉络膜,它含有大量的血管与色素,它能够供给眼球足够营养,同时就好像照相机的暗箱,防止光线的进入。眼球壁的内层叫做视网膜,视网膜通过神经与我们的脑相接。在视网膜上有很多可感受光线的细胞,它们就好像侦察兵一样,一旦有光线射在视网膜上,细胞可以立刻报告给大脑。
在眼球壁内有很多东西,例如房水、晶状体、玻璃体,但其中最重要的就属晶状体了。晶状体在虹膜之后,就好像是中间厚四周薄的凸透镜,当物体本身的光线或物体反射的光线穿透过角膜进入眼睛后,它能够把进入的光线汇聚在一块儿,形成了一个像点。随后调节眼球,使像点落在视网膜上,这时候视网膜的侦察兵们便会把消息传递给大脑,如此我们便看到了事物。
④ 眼睛为什么可以看见东西
人的眼睛,就像是一部使用方便的照相机。我们用眼睛可以看到外界所有事物,喜欢看什么就可以看。不论是近处还是远处,都可以看的客观逼真。
眼睛是一个可以感知光线的器官。最简单的眼睛结构可以探测周围环境的明暗,比如昆虫;更复杂的眼睛结构可以提供视觉,比如人类。
眼睛是球状的,当中充满透明凝胶状的物质,有一个聚焦用晶状体,还有一个可以控制进入眼睛光线多少的虹膜。眼睛由眼球和眼眶、结膜、眼器和外肌等结构组成。
眼睛通过调节晶状体的弯曲程度也就是屈光,来改变晶状体焦距获得倒立的、缩小的实像。眼睛所能看到的最远的点叫远点,正常眼所能看到的远点在极远处;眼睛所能看到的最近的点叫近点,正常眼睛的近点在距离眼睛约10厘米处。
看东西主要靠眼球。眼球中间有个圆孔叫瞳孔,外界光线通过瞳孔照入眼球里面,眼球里晶状体再把光线汇聚反射到视网膜上。
视网膜上一亿多个视神经细胞把物体上的感觉影像摄下来,图像刺激视网膜上的感光细胞,产生神经冲动,沿着视神经传到大脑的视觉中枢,在那里经过分析、辨认,于是我们就看见东西了。
⑤ 眼睛近视的人,为什么戴上眼镜就能看清东西
享受一时的清楚最后只能使眼睛近视的度数增加更快。这就是很多人明明配了眼镜但度数越来越深的原因,如果平常注意控制这种不良的视物习惯,近视度数也就不会在不知不觉中加深。
还有,人在眯眼的时候,瞳孔会随着入射光线亮度的改变而缩小,瞳孔就是光线进入眼睛的通道,它变小,经过它而形成的弥散斑自然也会变小。
因此在生活中,比如找不到眼镜了怎么办?这个时候你可以用手的示指和拇指圈出一个小孔,放在你的眼前去看,就会觉得清楚了很多,可以说是个一秒钟就能提高视力的方法。
当近视患者眯起眼睛看事物的时候,眼睛就可以对光线的入射起到限制的作用,从而减少像差,能让自己看的更清楚一些。
但这样做是不科学的。因为眼睛具有特殊的视觉敏锐性,如果你熟悉了模糊的视力,不及时矫正。错过了最佳治疗期间,以后矫正即使带上一定度数的眼镜也提高很难。
遵医嘱,定期复查,眼保健按摩、多望远、多户外活动是根本。恢复肯定和是否戴眼镜没什么必然关系。
这个和提高瞳孔收缩能力以及睫状肌调节力有关,在临床上也在一些小朋友身上做了尝试,效果很不错,不过视力提高是暂时的,短者数天,长者数周,会恢复到之前的视力,所以这些训练或者治疗需要长期进行,融合到生活中去。
如果是真性近视,估计就算一辈子不戴眼镜,想治好得等下辈子。而且由于看的更不清楚眼睛更加疲劳,近视会进展很快,度数直线加速上升
⑥ 我们通过眼睛观察世界,为什么眼睛可以看到东西
如果我们从外面看,我们的眼睛有两部,白眼和眼球,黑色眼球的最外层是一层薄薄的透明角膜,角膜内部的透明液体被称为房水,房水后面有一个弹性可调的曲率透镜,镜片后面有一种叫做玻璃体的透明凝胶。它们都可以穿过光,它们被三层膜包裹,最内层被称为视网膜,在视网膜上有许多感光细胞,可以感觉到光的刺激,中间层被称为脉络膜,上面有许多色素。
因此,具有特殊结构的眼球接收来自异物的各种光线,并通过一系列眼睛屈光系统刺激视网膜神经细胞并产生脉冲,通过视觉路径,每个站直接到达枕叶视觉中心形成视觉。在正常情况下,我们可以看到我们眼睛里的一切,我们可以看到物体的亮度,形状,大小和颜色等,看到事物是一个微妙的生理过程。
关于我们通过眼睛观察世界为什么眼睛可以看到东西的问题,今天就解释到这里。
⑦ 为什么眼睛能看到东西
自然界各种物体在光线的照射下,不同的颜色可以反射出明暗不同的光线,通过角膜进入眼内,经过屈光间质即房水、晶状体和玻璃体的折射,在视网膜上成像。视网膜把这些光的刺激变为神经冲动,由神经传入大脑中枢,然后我们就可以看见物体了。
眼球只是视觉器官的感受部分,完整的视器还应包括它的传导部分和中枢部分等。而后面这部分的路是很长的,大部分是在颅腔内,与大脑及其他组织密切相关。我们可以将眼球比作一个电灯泡,电灯泡所以发光,除了它本身特殊的结构和功能外,还必须有它的电源部分(发电机)和电路和传导(电线)等。否则,只有灯泡是不会自己亮起来的。
眼睛在看东西时,只是外界的物体的影像被视神经细胞所感受。要使我们在主观上能够看到这一物体,还必须经过视神经等一系列复杂的传导,直至大脑枕叶视觉皮质中枢。经过中枢的综合分析,包括两个眼睛传来的不完全十分相同的影像综合分析以后才能完成。这与只要按动一次快门,底片上爆光一次就可以显出影像来的简单照像技术是无法相提并论的。
照相时一般底片感光只是一次,但是眼睛里的视网膜却总是在连续的爆光,常常伴随到人们的生命终结。它的爆光次数一小时内究竟有多少次,是无法计算和统计的。外界环境信息的80%都是通过人的眼睛才被接受的。由此可见,眼睛上这个“底片”也是照相底片所无法比拟的。
我们看东西,要经过视器的感受、传导和中枢等一系列过程。但这些环节中各种组织都必须完全健康,功能必须完全正常才能完成。否则,任何一个环节发生了障碍,都会影响甚至破坏了视觉的形成。
但是这一系列的复杂过程,对正常人来说却是可以在瞬间完成的,而其精细的程度有时简直难以令人置信。尽管人类已经有了高度发达的科学技术,但到目前为止,还是造不出象眼睛这样的装置。
⑧ 人的眼睛为什么能看到东西
人的眼睛之所以能看到各种东西,是因为物体受到光的照射后,能把光向四面八方反射出来,这些反射光到达眼睛里,眼睛通过其特有的功能,我们就能看到东西。如果在伸手不见五指的黑夜,没有光的反射,眼睛就没办法看见东西了。
有趣的是,不仅人的眼睛和自然界的许多生物能感受光,而且有些金属也具有这种感光的本领。这种金属在光的照射下能发射电子。光线越强,射出的电子就越多。电子在导体中流动,形成电信号。这种现象称为“光电效应”。
⑨ 眼睛看得见东西的原理是什么
俗话常说:“耳听为虚,眼见为实”,这种说法不仅是几百几千年来的经验之谈,更已经被很多人奉为真理。但眼睛看见的是否真的就是事物的本身呢?在我们的日常生活中人们经常用以证明一个事物的真实性的表述就是:这是我亲眼看到的!但,法庭上却不承认没有其他辅助证据的一个人的“亲眼所见”。为什么?眼见不为实吗?
的确,不可否认眼睛是人的感觉器官中最直接,最能反映事物原貌的。这一点已被美国范德比尔特大学的科学家托马斯·詹姆斯及其同事通过两个实验证实。
在他的第一个实验中,托马斯·詹姆斯等人让接受实验的志愿者观看计算机屏幕上的球。这个球是由很多的点构成的,这些点或是向左或是向右转动,让人们感觉球在也在相应的方向上转动。托马斯·詹姆斯等人让志愿者说出球的转动方向,结果各有一半的人选定向左或向右。这不出所料,因为那些点向左或是向右转动的时间是相同的。此后,科学家让接受实验者在观看屏幕的同时,手中还触摸一个向左或向右转动的用聚苯乙烯泡沫塑料做成的球,希望人的触觉能影响大脑的判断。但结果是,只有65%的受验者宣称他看的球的转动方向与他触摸的一致,这显示触觉并没有多大的影响。
托马斯·詹姆斯等人进行了第二个实验。他们让受验者闭上一只眼睛来观看实际存在的转动的球。由于只用一只眼,受验者不能肯定说出球的转动方向,但是他们又让受验者能够触摸或感觉到球的转动方向,结果只有70%的受验者正确说出了球的转动方向,另外的30%还是被错误的视觉信息所误导。托马斯·詹姆斯等人由此得出结论,视觉观察结果对于大脑判断最为重要。人的大脑不是将视觉和触觉所获得的信息联合起来,而是分开加以处理的,而且更相信视觉信息,尽管有些时候触觉信息更可靠。
托马斯的试验在证实“眼见为实”的同时,却也又恰恰证明了“眼见不一定为实”。
其实,自古以来,人类就有很多错觉,如不用理智来精细推测,用开放的心胸来包容,往往会被表面现象迷惑,将错就错,甚至哲学家也不例外。亚里士多德就曾经认为重的物体比轻的物体落地快,可是后来伽利略的斜塔实验证明他是错的。孔子即使被奉为中国的圣人却也不能避免。因此着名灵魂乐手马文·盖在上世纪60年代的流行歌曲中告诫人们:我们应该只相信眼见的一半。
那么,为什么自己亲眼看得真真切切的东西却可能并不是我们脑中浮现的呢?这是有一定的科学依据的。因为我们眼睛的构造、大脑的工作原理、我们的认识习惯以及一系列传统观念的束缚,使得眼见不一定为实。
一、人眼是有视觉限制的。
我们人类有眼睛。正常人的眼睛在接触光线后,会产生视觉。但是人的眼睛有它特殊的构造,并不是一切光线都能使人产生视觉。红外线和据说蚂蚁能够"看得见的"紫外线,都不能够使人产生视觉。因此正常人的眼睛,也可以说是很有"缺陷"的。
二、人脑会创造自己的一套逻辑,将非现实的信息予以合理化。
而现在华盛顿大学圣路易分校生物医学工程系和匹兹堡大学神经生物学系的合作研究显示,有时你看到的任何事都不能相信。研究人员发现,你实际上正在做的事和你认为你正在做的事,在大脑中显示的部位不同。
丹尼尔·莫朗是圣路易分校生物医学工程暨神经生物助理教授。他与合作伙伴——匹兹堡大学的安德鲁·修怀兹和安东尼·瑞纳专注于研究认知和视觉小把戏,以及猕猴和人对这些小把戏的反应。他们创造了一个虚拟实境电视游乐器对猴子进行实验,让它们以为自己在用手描绘椭圆形,而实际上它们是画着圆形。研究人员监控猴子的神经细胞,并分辨脑中哪一个区域显示圆形,哪一个区域显示椭圆形。他们发现主要运动皮质区显示的是实际行动,而隔壁一个称之为腹侧运动前区的部位,制造着椭圆的幻象。
这项研究显示,人脑会创造自己的一套逻辑,将非现实的信息予以合理化。例如第一次戴上一副双焦点的老花眼镜时,会发现眼睛看到的景象和手触摸到的周围环境是不大一样的。渐渐地大脑会进行调整,消除视觉与触觉的差异。腹侧运动前区在此扮演重要角色。
三、我们的认识习惯使我们往往忽略事物的真实面貌。
我们往往说“一见钟情”,其中说明我们对于事物的认识其实是十分模糊且第一印象的。我们对于一件事物的认识,一般上一开始只是对视觉信号进行模糊处理,即只对信号进行轮廓辨认和处理,也即只辨认主要特征。比如人或动物或物体;动的或静的;大或小;远或近;男或女;高或矮等等特别明显的差异进行甄别。我们只有在多次接触或引起注意的时候才会注意到更多的细节的东西。这就造成我们被第一印象所欺骗。
这也就是说,人在得到一个印象时,一是模糊扫描的,二是将其分成各种要素来记存的。也就是说记存的不是完整的印象。所以,即使是眼光最敏锐和记忆最好的人也无法真正还原一个事物的完整的印象。
四、传播通道中的“噪音”亦将影响“眼见之景象”
这里的“眼见”指的其实是向别人描述自己“亲眼看见的东西”,人们往往把别人看见的东西就当成是事物的本来面目,认为既然有人看见了,又能如此详细的描述出来这总不会有错吧?但事实上,这之间往往会出现偏差。
人要将自己看到的事物传给另外别人时,并不能将原来的“印象”原原本本地送到别人的眼中。而是需要用另外的人体器官如:嘴——语言描述;手——图画描写;这就要转换,即将脑中记存的要素重新组合成印象并变成语言和动作。因为印象是要重新组合的,所以只要意识上出现偏差这种组合就会出现偏差,而且往往将自己没注意的差异漏掉。而在信息传播过程中,也会产生误差,这些都是“噪音”。接受这样的描述的人再将这些描述在大脑中进行类似的处理。这样与事物的原本面貌之间的差异就更大了。有时甚至是很离谱。
五、传统想法加上利害关系,使人们只看到他们想要看的。
亲眼看到的才信,对看不见、不能理解的一概不信,这是一般人判断真伪的方法。实际上这是由于传统想法加上利害关系蒙蔽了人的眼睛。正因为人们相信自己看到的就是真实的,这也往往会造成一种麻痹心里,忽略了其实应该是可以注意到的因素。使他们只看得见他们想要看到的,看不见他们不想看到的。所以这也是一种迷信,是迷信于自己的眼睛和观念,而正是这种固步自封的认识方法造成了科技无法进步。
比如我们看见室内的桌子、椅子、笔、砚、杯、盘都是静止不动的,是坚实无缝的。但是物理学家会告诉我们,在这些物质内部,电子围绕原子核以光的速度旋转着,原子与原子也是时刻不停地振动着。
电子与原子核,原子与原子之间都留着极大的空隙,非常疏松,像空气一样。这和我们看见外表的静止、坚实完全不一样。可见,人类的眼睛实际上是看不到物体真相的,必须用合乎逻辑的理智才能推得正确的答案。
平时我们认为确实看得一清二楚的事物,事实上有时也没有真正看清。科学家告诉我们,人眼所能看到的光线,只在可见光400~700纳米的电磁波长范围内,是极为有限的一部分;听到的频率范围也仅限于20~2万赫兹。
由于人眼的错觉,太空中原来大放光明的地方,长久以来一直被认为是漆黑一团,就是因为人眼的视力所限,即使借助某些工具,人观察到的也只能是最表层的显现。后来科学家意识到了这个问题,采用了红外线、紫外线、X射线来观察天体,结果豁然开朗,那些隐藏在黑暗中的天体瞬间出现在人类眼前,景象壮观得令人难以置信。当前最先进的哈勃太空望远镜,就能用红外线来观察天体。
正是由于上诉种种原因,使得我们看到的往往与事物本身是有出入的,尤其是第一印象。看上面的那些图也可以说明这一点,往往是第一眼欺骗了自己,当我们重新认真审视这些图时,就可以很快发现其中的奥妙了,
对此我们可以发现,对于眼睛所造成的视觉误差,虽然有人体构造等等的限制我们暂时无法改变,但对于我们的认识习惯等是可以减少我们这种不必要的“麻烦”的。这要我们在关注事物的时候,不要受陷于自己的刻板印象,不要急于下结论,多看多想,多点理性,少点鲁莽,很多“误会”是可以被消除的。