蓄冷罐放冷時間為什麼是15分鍾
① 機房的蓄冷罐或者水塔是否可以放置到地下
從理論上說放在地下是可行的,不過難度較大且工程量很大。
機房內使用的儲冷罐或者是水塔除了內部溫度要求之外,還有很多其它要求條件或者是使用條件,只有這些條件都滿足才能正常工作。
承壓式的罐體較為好高,非承壓開式的罐體放入地下的話就非常麻煩。
② 暖通蓄冷系統蓄冷操作sop流程
摘要 放冷步驟: 1、關閉所有製冷設備,准備進行蓄冷罐放冷操作。 1、將分水器蓄冷進水閥門和集水器蓄冷出水閥門全部打開。 2、打開蓄冷常開...
③ 閉式循環冷水機組120kw的一個小冷水機組,為什麼還要配置蓄冷罐,然後在蓄冷罐上面還連接了一個膨脹
數據中心冷凍水系統和民用的有所不同,因為數據中心對安全性要求較高,當市電掉電時,冷水機組不能立即啟動,至少會有三分鍾的啟動時間,而此時數據中心溫度急劇上升,很危險,所以蓄水罐的作用是當市電掉電,冷水主機沒有啟動起來時的備用冷源,一般容積是滿足掉電3到5分鍾的冷水需求
④ 冰蓄冷的選型
除了空調供冷外,全天的其餘時間全部用於蓄冷,這樣可使主機的容量減少至最小值。
蓄冷比例的確定是非常重要的一個環節,在方案設計中一般先初步選擇較典型的幾個值(如30%等),經設備初選型,根據當地有關的電力政策並計算初投資、運行費、並考慮其它因素最後選定較佳的比例值。 蓄冰槽容量
Q′=n2*q*T2
板式換熱器選型
F=Q/(K×Δtm)
公式中Q為總換熱量;K為換熱系數;Δtm 為對數平均溫差; 冰蓄冷系統中,由於乙二醇價格較高,對水泵的密封性能要求較高。一般建議採用帶機械密封的水泵,可以減少漏液或幾乎不漏液。
水泵選型:根據流程,確定滿足各種工況下的最大阻力和流量;為達到節能的目的,盡量選用多台泵。
該工程採用並聯流程,初級泵流量=Q/C×Δt
揚程P(估算)=P主機+P蓄冷罐+P管道+P閥門
揚程P=P換熱器+P蓄冷罐+P管道+P閥門
水泵選型後,還需與自控專業配合,校核各工況下的流量和阻力分配,以及三通閥的調節能力能否滿足工況要求等。 a〕採用主機上游的串聯系統,主機上游回水先流經主機,使主機在較高的溫度下運行,提高了壓縮機的效率,使能耗降低。
b〕蓄冰裝置發科(FAFCO)標准蓄冰槽。發科(FAFCO)標准蓄冰槽有以下優點∶在保證導熱性能的同時,徹底杜絕腐蝕隱患,重量輕;採用不完全凍結式,可提供穩定的低溫載冷劑,減小循環水泵的流量及相應管道的管徑,降低初投資;外結冰,無內應力,使用壽命長;傳熱面積大,結冰融冰速率穩定;結冰厚度薄,製冷主機運行效率高。
c〕設計日聯合供冷時,採用主機優先模式,主機一直滿負荷運行,機組利用率高,主機和蓄冷盤管容量最小,投資最節省。
d〕所有水泵採用原裝進口優質產品,變頻運行。整個供冷期,大部分時間都為部分負荷,水泵通過無級調速.變頻,節能效果明顯。
⑤ 水蓄冷的水蓄冷的方法
水蓄冷是利用水的顯熱實現冷量的儲存。因此,一個設計合理的蓄冷系統應通過維持盡可能大的蓄水溫差並防止冷水與熱水的混合來獲得最大的蓄冷效率。在水蓄冷技術中,關鍵問題是蓄冷罐的結構形式應能防止所蓄冷水與迴流熱水的混合。為實現 這一目的,目前常用的有以下幾種方法: 將冷水的熱水分別儲存在不同的罐中,以保證送至負荷側的冷水溫度維持不變,多個蓄水罐有不同的連接方式,一種是空罐方式。如圖1a,它保持蓄水罐系統中總有一個罐在蓄冷或放冷循環開始時是空的。隨著蓄冷或放冷的進行,各罐依次倒空。另一種連接方式是將多個罐串聯連接或將一個蓄水罐分隔成幾個相互連通的分格。如圖1b,圖中示出蓄冷時的水流方向。蓄冷時,冷水從第一個蓄水罐的底部入口進入罐中,頂部溢流的熱水送至第二個罐的底部入口,依次類推,最終所有的罐中均為冷水;放冷時,水流動方向相反,冷水由第一個罐的底部流出。迴流熱水從最後一個罐的頂部送入。由於在所有的罐中均為熱水在上、冷水在下,利用水溫不同產生的密度差就可防止冷熱水混合。多罐系統在運行時其個別蓄水罐可以從系統中分離出來進行檢修維護,但系統的管路和控制較復雜,初投資和運行維護費作較高。
利用水在不同溫度下密度不同而實現自然分層。系統組成是在常規的製冷系統中加入蓄水罐,如圖3a所示。在蓄冷循環時,製冷設備送來的冷水由底部散流器進入蓄水罐,熱水則從頂部排出,罐中水量保持不變。在放冷循環中,水流動方向相反,冷水由底部送至負荷側,迴流熱水從頂部散流器進入蓄水罐。圖3b是蓄冷特性曲線圖。縱坐標為溫度,橫坐標為蓄水量的百分比。A、C分別為放冷循環時製冷機的回水和出水特性曲線;B、D分別為蓄冷循環時製冷機的回水和出水特性曲線。一般用蓄冷效率來描述蓄水罐的蓄冷效果。蓄冷效率的定義是蓄冷罐實際入冷量與蓄冷罐理論可用蓄冷量之比,即:蓄冷效率=(曲線A與C之間的面積)/(曲線A與D之間的面積)
一般來說,自然分層方法是最簡單,有效和經濟的,如果設計合理,蓄冷效率可以達到85%-95%。
圖四所示為蓄冷罐和斜溫層內溫度變化簡圖。斜溫層是冷水與熱水之間的溫度過渡層。明確而穩定的斜溫層能防止冷水與熱水的混合,但斜溫層的存在降低了蓄冷效率。蓄冷系統能否在高效率下保持正常而穩定的工作主要取決於頂部和底部散流器的設計和蓄水罐的設計。散流器用於均布進入罐中的水流,減少擾動和對斜溫層的破壞。 在蓄水罐內部安裝一個活動的柔性膈膜或一個可移動的剛性隔板,來實現冷熱水的分離,通常隔膜或隔板為水平布置。這樣的蓄水罐可以不用散流器,但隔膜或隔板 的初投資和運行維護費用與散流器相比並不佔優勢。
⑥ 隔膜式水蓄冷廈門壹水務現貨工廠冰蓄冷價格如何計算
實現數據中心快速、持續和穩定的供冷要求。筆者對大溫差水蓄冷與小溫差水蓄冷充放冷的過程進行數值模擬研究,建模型將蓄冷罐的布水器簡化成均勻流速的平面,並且蓄冷罐的外壁面按絕熱層考慮。其中大溫差蓄冷的供回水溫度分別為7℃/18℃,小溫差蓄冷的供回水溫度分別為12℃/18℃。充、放冷過程15min。
⑦ 蓄冷罐在外界溫度高於罐內溫度10度的情況下,為什麼罐內的水還會有上下浮動。
從曲線上看,這個不存在任何問題。
首先,環境溫度高於蓄冷罐內實際溫度,所以蓄冷罐內溫度逐步上升,呈上升趨勢是正確的,因為外界熱量一直在往罐內傳遞。
至於罐內測溫數值在一定范圍內波動,則與熱量傳遞,蓄冷罐內介質自然對流,導致局部溫度相互產生偏差,同時測溫元件本身測量也有偏差以及波動所導致的。也是正常現象。
⑧ 蓄冰和融冰的節能方法
冰蓄冷是一種利用夜間低谷負荷電力製冰儲存在蓄冰裝置中,白天融冰將所儲存冷量釋放出來,減少電網高峰時段空調用電負荷及空調系統裝機容量的空調。
技術簡述
編輯
冰蓄冷空調是利用夜間低谷負荷電力製冰儲存在蓄冰裝置中,白天融冰將所儲存冷量釋放出來,減少電網高峰時段空調用電負荷及空調系統裝機容量,它代表著當今世界中央空調的發展方向。
1.削峰填谷、平衡電力負荷。
2.改善發電機組效率、減少環境污染。
3.減小機組裝機容量、節省空調用戶的電力花費。
4.改善製冷機組運行效率。
5.蓄冷空調系統特別適合用於負荷比較集中、變化較大的場合加體育館、影劇院、音樂廳等。
6.應用蓄冷空調技術,可擴大空調區域使用面積。
7.適合於應急設備所處的環境,計算機房、軍事設施、電話機房和易燃易爆物品倉庫等。
優勢
(1)節省電費。
(2)節省電力設備費用與用電困擾。
(3)蓄冷空調效率高。
(4)節省冷水設備費用。
(5)節省空調箱倒設備費用。
(6)除濕效果良好。
(7)斷電時利用一般功率發電機仍可保持室內空調運行。
(8)可快速達到冷卻效果 。
(9)節省空調及電力設備的保養成本。
(10)降低噪亂冷水流量與循環風上減少,即水泵與空調機組運轉振動及噪音降低。
(11)使用壽命長。
缺點
(1)對於冰蓄冷系統,其運行效率將降低。
(2)增加了蓄冷設備費用及其佔用的空間。
(3)增加水管和風管的保溫費用。
(4)冰蓄冷空調系統的製冷主機性能系數(COP)要下降。
運行策略
所謂運行策略是指蓄冷系統以設計循環周期(如設計日或周等)的負荷及其特點為基礎,按電費結構等條件對系統以蓄冷容量、釋冷供冷或以釋冷連同製冷機組共同供冷作出最優的運行安排考慮。一般可歸納為全部蓄冷策略和部分蓄冷策略。
工作模式
蓄冷系統工作模式是指系統在充冷還是供冷,供冷時蓄冷裝置及製冷機組是各自單獨工作還是共同工作。蓄冷系統需在規定的幾種方式下運行,以滿足供冷負荷的要求常用的工作模式有如下幾種:
(1)機組製冰模式
(2)製冰同時供冷模式
(3)單製冷機供冷模式
(4)單融冰供冷模式
(5)製冷機與融冰同時供冷
供冷
在此工作模式下製冷機和蓄冰裝置同時運行滿足供冷需求。按部分蓄冷運行策略,在較熱季節都需要採用這種工作模式,才能滿足供冷要求。該工作模式又分成了兩種情況,即機組優先和融冰優先。
機組優先
迴流的熱乙二醇溶液,先經製冷機預冷,而後流經蓄冰裝置而被融冰冷卻至設定溫度。
融冰優先
從空調負荷端流回的熱乙二醇溶液先經蓄冰裝置冷卻到某一中間溫度,而後經製冷機冷卻至設定溫度。
產品分類
冰蓄冷空調製冰機組分出很多種類像冰球製冷、鋼盤管內(外)融冰、冰漿、冰蕊等製冰方式
流程選擇
編輯
蓄冰空調系統在運行過程中製冷機可有兩種運行工況,即蓄冰工況和放冷工況。在蓄冰工況時,經製冷機冷卻的低溫乙二醇溶液進入蓄冰槽的蓄冰換熱器內,將蓄冰槽內靜止的水冷卻並凍結成冰,當蓄冰過程完成時,整個蓄冰設備的水將基本完全凍結。融冰時,經板式換熱器換熱後的系統迴流溫熱乙二醇溶液進入蓄冰換熱器,將乙二醇溶液溫度降低,再送回負荷端滿足空調冷負荷的需要。
乙二醇溶液系統的流程有兩種:並聯流程和串聯流程。
並聯流程
這種流程中製冷機與蓄冰罐在系統中處於並聯位置,當最大負荷時,可以聯合供冷。同時該流程可以蓄冷、蓄冷並供冷、單溶冰供冷、冷機直接供冷等。
串聯流程
即製冷機與蓄冰罐在流程中處於串聯位置,以一套循環泵維持系統內的流量與壓力,供應空調所需的基本負荷。串聯流程配置適當自控,也可實現各種工況的切換。
並聯流程在發揮製冷機與蓄冰罐的放冷能力方面均衡性較好,夜間蓄冷時只需開啟功率較小的初級泵運行,蓄冷時更節能,運行靈活。串聯流程系統較簡單,放冷恆定,適合於較小的工程和大溫差供冷系統。
選型
編輯
除了空調供冷外,全天的其餘時間全部用於蓄冷,這樣可使主機的容量減少至最小值。
蓄冷比例的確定是非常重要的一個環節,在方案設計中一般先初步選擇較典型的幾個值(如30%等),經設備初選型,根據當地有關的電力政策並計算初投資、運行費、並考慮其它因素最後選定較佳的比例值。
蓄冰罐
蓄冰槽容量
Q′=n2*q*T2
板式換熱器選型
F=Q/(K×Δtm)
公式中Q為總換熱量;K為換熱系數;Δtm 為對數平均溫差;
水泵
冰蓄冷系統中,由於乙二醇價格較高,對水泵的密封性能要求較高。一般建議採用帶機械密封的水泵,可以減少漏液或幾乎不漏液。
水泵選型:根據流程,確定滿足各種工況下的最大阻力和流量;為達到節能的目的,盡量選用多台泵。
該工程採用並聯流程,初級泵流量=Q/C×Δt
揚程P(估算)=P主機+P蓄冷罐+P管道+P閥門
揚程P=P換熱器+P蓄冷罐+P管道+P閥門
水泵選型後,還需與自控專業配合,校核各工況下的流量和阻力分配,以及三通閥的調節能力能否滿足工況要求等。
考慮因素
a〕採用主機上游的串聯系統,主機上游回水先流經主機,使主機在較高的溫度下運行,提高了壓縮機的效率,使能耗降低。
b〕蓄冰裝置發科(FAFCO)標准蓄冰槽。發科(FAFCO)標准蓄冰槽有以下優點∶在保證導熱性能的同時,徹底杜絕腐蝕隱患,重量輕;採用不完全凍結式,可提供穩定的低溫載冷劑,減小循環水泵的流量及相應管道的管徑,降低初投資;外結冰,無內應力,使用壽命長;傳熱面積大,結冰融冰速率穩定;結冰厚度薄,製冷主機運行效率高。
c〕設計日聯合供冷時,採用主機優先模式,主機一直滿負荷運行,機組利用率高,主機和蓄冷盤管容量最小,投資最節省。
d〕所有水泵採用原裝進口優質產品,變頻運行。整個供冷期,大部分時間都為部分負荷,水泵通過無級調速.變頻,節能效果明顯。
系統指標
編輯
蒸發溫度
蓄冷空調系統特別是冰蓄冷式空調系統在蓄冷過程中,一般會造成製冷機組的蒸發溫度的降低。理論上說蒸發溫度每降低 l℃,製冷機組的平均耗電率增加 3%。因此在配置系統,選擇蓄冷設備時應盡可能地提高製冷機組的蒸發溫度。對於冰蓄冷系統,影響製冷機組的蒸發溫度的主要因素是結冰厚度,製冰厚度越薄,蓄冷時所需製冷機組的蒸發溫度較高,耗電量較少;但是製冰厚度太薄,則蓄冰設備盤管換熱面積增加,槽體體積加大,因此一般應考慮經濟厚度來控制製冷系統的蒸發溫度。
蓄冷量
名義蓄冷量
名義蓄冷量是指由蓄冷設備生產廠商所定義的蓄冷設備的理論蓄冷量(一般比凈可用蓄冷量大)。 凈可利用蓄冷量是指在一給定的蓄冷和釋冷循環過程中,蓄冷設備在等於或小於可用供冷溫度時所能提供的最大實際蓄冷量。
可利用蓄冷量
凈可利用蓄冷量占名義蓄冷量的百分比例值是衡量蓄冷設備的一個重要指標,此比例值越大,則蓄冷設備的使用率越高,當然此數值受蓄冷系統很多因素的影響,如蓄冷系統的配置,設備的進出口溫度等。對於冰蓄冷系統此數值可近似為融冰率.
制/融冰率
製冰率(IPF)有兩種定義,一是指對於冰蓄冷式系統中,當完成一個蓄冷循環時,蓄冰容器內水量中冰所佔的比例.另一個是指蓄冰槽內製冰容積與蓄冰槽容積之比。而融冰率是指在完成一個融冰釋冷循環後,蓄冰容器內融化的冰占總結冰量的百分比。製冰率與融冰率這兩個概念是冰蓄冷式系統中評價蓄冰設備的兩個非常重要數值 融冰率與系統的配置有關,對於串聯式製冷機組下游的系統,蓄冷設備的融冰率較高;反之,則較低。而並聯系統的融冰率界於兩者之間。
特性
通常蓄冷系統的蓄冷溫度取決於蓄冷速率和這一時間蓄冷槽體的狀態特性,對於外融冰式系統是指內管壁的結冰量。對於蓄冷時間短的蓄冰系統,一般需要較高的蓄冷速率,即指較低的(平均)蓄冷溫度蓄冷;反之,蓄冷速率慢,蓄冷溫度較高。一般情況下蓄冷設備生產廠商都可以提供各種蓄冷速率下最低蓄冷溫度值。 對於蓄冷設備如容器式、優態鹽式,在蓄冷過程的初期會產生過冷現象,過冷現象僅發生在蓄冷設備已完成釋冷,內無一點余冰時,其結果是降低了蓄冷開始階段的換熱速率。過冷現象可以通過添加起成核作用的試劑來削減其過冷度值。據國外資料介紹,某種專利成核劑可限制過冷度在-3℃~-2℃之間。
對於蓄冰式系統,在釋冷循環過程中,若釋冷溫度保持不變,則釋冷量會逐漸減少;或當釋冷速率保持恆定時,釋冷溫度會逐漸上升。這對於完全凍結式,容器式蓄冷設備表現特別明顯,這是由於盤管外和冰球內的冰在大部分是隔著一層水進行熱交換融冰,同時換熱面積是在動態變化;而對於製冰滑落式,冷媒盤管式蓄冷設備,溫水與冰直接接觸融冰,釋冷溫度相對保持穩定。
實際上,蓄冷設備很少保持釋冷速率恆定不變,實際釋冷速率取決於空調負荷曲線圖,特別是最後幾個小時的空調負荷值最為重要,這決定了釋冷循最高釋冷溫度值。 因此,對於同種類型的蓄冷設備,哪一種在實際釋冷速率條件下,保持恆定釋冷溫度的時間越長,哪一種設備的性能越好。
佔用空間
蓄冷設備的佔用空間是業主與設計者應重點考慮的項目,特別是高樓林立的都市地區,寸士即寸金,有時為增加停車位,而放棄採用蓄冷空調系統,因此蓄冷設備的單位可利用蓄冷量所佔用體積或面積是衡量蓄冷設備的一項重要指標,應優先考慮佔用空間少,布置位置靈活的蓄冷設備。
熱損失
在設計蓄冷槽體時應注意:槽體必須有足夠的強度克服水,冰水混合物或其它冷媒體的靜壓,槽體應作防腐防水處理,同時應防止水的蒸發。對於埋地式蓄冷槽,槽體還須承受泥土和地表水對槽體四周的壓力。 蓄冷槽體一般每天有l—5%的能量損失,其數值大小取決於槽體的面積、傳熱系數和槽體內外溫差。對於埋地式蓄冷槽設計時必須考慮其冷損失,通常換熱系數取0.58~1.9W/ M2.K。槽體材料可選用鋼結構、混凝土、玻璃鋼或塑料。
安全性
蓄冷空調系統,主要應用於商用大樓,特別是都市人口稠密的地區,其系統首先應考慮安全性。 通常蓄冷設備的維修量很小,如內融冰式、容器式、優態鹽式等.但對於冷媒盤管式系統,由於製冷劑在蓄冷設備內直接蒸發,蒸發面積很大,製冷劑需求量也很多,蓄冷設備的安全性與可靠性是十分重要的。而對於製冰滑落式,冰晶式蓄冷設備的機構維修問題應予以重視。
使用壽命
通常常規空調系統的使用壽命 15—25年,同樣對於蓄冷設備的使用壽命也應加以限制,一般最少應有15年以上的使用壽命,以保證設備的可靠性。 例如,對於優態鹽式系統,其使用壽命周期應在相變次數3000次以上仍保持系統原有的名義蓄冷量和凈可利用蓄冷量。
經濟性
蓄冷空調系統無論是採用部分蓄冷還是全部蓄冷,其初期投資通常均比常規空調系統高,這就要求設計者應正確掌握建築物空調負荷的時間變化特性,確定合理的蓄冷設備及其系統配置,制定系統的運轉策略,准確地作出經濟分析,以便投資者可以在短時間里以節省電費的形式收回多出的投資.一般情況下,在一個已設計好的蓄冷系統中可以以單位可利用蓄冷量所需的費用來衡量蓄冷設備。另外,蓄冷系統的配置也影響蓄冷設備的大小。
10、關於冰蓄冷中載冷劑的選擇;1)要求載冷劑在工作溫度下處於液體狀態,不發生相變。2)要求載冷劑的凝固溫度至少比製冷劑的蒸發溫度低4~8℃,標准蒸發溫度比製冷系統所能達到的最高溫度高。比熱要大,在傳遞一定熱量時,可使載冷劑的循環量小,使輸送載冷劑的泵耗功減少,管道的耗材量減少,從而提高循環的經濟性。另外當一定量的流體運載一定量的熱量時,比熱大能使傳熱溫差減小。3)熱導率要大,可增加傳熱效果,減少換熱設備的傳熱面積。4)粘度要小,以減少流動阻力和輸送泵功率。5)化學性能要求穩定。載冷劑在工作溫度內不分解;不與空氣中的氧化合,要求不腐蝕設備和管道。感謝東華大學環境與工程學院的各位老師提供資料。
發展狀態
編輯
在發達國家,60%以上的建築物都已使用冰蓄冷技術。美國芝加哥一個城市區域供冷系統,600多萬平方米的建築共有4個冷站,城市集中供冷。其中芝加哥城市供冷三號冷站蓄冰量是12.5萬冷噸時,電力負荷438兆瓦,每日製冰4700噸。從美、日、韓等國家應用的情況看,冰蓄冷技術在空調負荷集中、峰谷差大、建築物相對聚集的地區或區域都可推廣使用。目前我國每年新建建築面積約20億平方米,其中,城市新增住宅建築和公共建築約8億~9億平方米,為冰蓄冷技術的推廣應用提供了巨大市場。我國每年公共建築新增面積約3億平方米,如30%的新建公共建築採用冰蓄冷空調系統,全國每年可節電15億千瓦時。
⑨ 冰峰18蓄冷瓶使用方法
摘要 充冷步驟 :
⑩ 數據中心蓄冷罐原理及作用
蓄冷罐顧名思義是用於蓄冷的設備,可分為水蓄冷和冰蓄冷兩種。其原理是通過水或冰將數據中心空調系統運行中的富餘冷量進行儲藏(如晚上室外溫度低且電費低時),在需要時再將冷量釋放出來(如停電而柴發尚未啟動時),用於數據中心製冷需求,保證製冷系統的平緩過渡運行,保障數據中心安全。