當前位置:首頁 » 半夜時分 » 黑洞為什麼會扭曲時間

黑洞為什麼會扭曲時間

發布時間: 2022-04-11 06:13:30

『壹』 為什麼都說黑洞能扭曲時間,怎麼扭曲的啊黑洞扭曲光 物質 空間,這和時間有什麼關系。

是重力能扭曲空間,雖然重力不會對光產生扭曲,但空間是光傳播的通道,扭曲了空間就等於扭曲了光的傳播路徑。
而黑洞附近的空間被重力扭曲的連光無法傳播而出。
時間和速度有關系,速度加快時間會變慢,地球人造衛星上的時間就比地面慢,運動越快的衛星上面的時鍾越慢,而在黑洞的引力捕獲下會接近光速運行,可想而知。

『貳』 當物體靠近黑洞時,它的時間就會過得極慢甚至停止,這是為什麼

這是一個相對令人頭疼的問題。我們需要了解愛因斯坦相對論中非常抽象的時間概念,在相對論體系中,我們的時間和空間之所以被稱為「時間和空間」,是因為時間和空間是由時間和空間組成的,它們是一個不可分割的,任何脫離時空體系的對時間的描述都是單方面的。簡而言之,時間對於時空來說是可變參數,由於對象的重力和對象的移動速度而可以更改。

如上所述,從固定參考系的觀察者的角度來看,物體的重力拉力越大,其經過的時間越短。根據「引力時間擴展效應」,當我們在靜止參照系中觀察靠近引力天體的物體時,例如黑洞,當物體靠近黑洞時,時間會變慢慢一點由於黑洞的重力幾乎是無限的,因此該物體的時間將無限接近零。因此,從我們的角度來看,這個物體似乎永遠不會進入黑洞。

『叄』 黑洞的質量一般有多大,為何可以彎曲時間和空間

黑洞的質量以目前的技術是無法計算出來的,是因為存在很多的引力引起的宇宙中的物質和能量發生扭曲。

宇宙最引人入勝的概念之一,是引力不是因為某種看不見的力引起,而是由於宇宙中的物質和能量,它們使空間結構扭曲而產生的。物質和能量告訴空間如何彎曲。彎曲的空間為物質和能量的運動鋪平了道路。兩點之間的距離不是直線,而是由空間本身的結構所確定的曲線。

3

不是我們與質量的接近程度,也不是質量的總量決定了空間彎曲的嚴重程度。相反,它是給定空間中存在的總質量。最好的可視化方法是考慮我們的太陽:一個半徑約70萬公里的太陽質量物體。在距太陽中心70萬公里的最邊緣,光線偏斜約0.0005度。

引力透鏡的作用遠不止於此,在這種情況下,非常大的質量,如類星體或星系團,會嚴重彎曲空間,從而背景光會失真,放大並拉伸成多個圖像。然而,即使是數萬億的太陽質量,其所產生的偏斜量影響只是很小的度數級。

但是在所有這些情況下需要考慮一些重要的事情。無論是擁有太陽般的恆星、白矮星、中子星還是黑洞,總質量都相同。空間彎曲得更嚴重的原因是,質量更加集中,您能夠盡可能地接近它。這是所有黑洞的普遍屬性。當光線剛好掠過事件視線的外部時,它正處於被吞噬的邊緣,並且將最大程度地圍繞黑洞的近區彎曲。

總的來是,以目前的科技水平還沒有可能計算出黑洞的質量,因為黑洞周圍會出現很強大的引力,會把周圍的物質和能量發生改變和扭曲。

『肆』 黑洞怎麼影響時間

「黑洞」很容易讓人望文生義地想像成一個「大黑窟窿」,其實不然.所謂「黑洞」,就是這樣一種天體:它的引力場是如此之強,就連光也不能逃脫出來.
根據廣義相對論,引力場將使時空彎曲.當恆星的體積很大時,它的引力場對時空幾乎沒什麼影響,從恆星表面上某一點發的光可以朝任何方向沿直線射出.而恆星的半徑越小,它對周圍的時空彎曲作用就越大,朝某些角度發出的光就將沿彎曲空間返回恆星表面.
等恆星的半徑小到一特定值(天文學上叫「史瓦西半徑」)時,就連垂直表面發射的光都被捕獲了.到這時,恆星就變成了黑洞.說它「黑」,是指它就像宇宙中的無底洞,任何物質一旦掉進去,「似乎」就再不能逃出.實際上黑洞真正是「隱形」的,等一會兒我們會講到.
那麼,黑洞是怎樣形成的呢?其實,跟白矮星和中子星一樣,黑洞很可能也是由恆星演化而來的.
我們曾經比較詳細地介紹了白矮星和中子星形成的過程.當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料(氫),由中心產生的能量已經不多了.這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量.所以在外殼的重壓之下,核心開始坍縮,直到最後形成體積小、密度大的星體,重新有能力與壓力平衡.
質量小一些的恆星主要演化成白矮星,質量比較大的恆星則有可能形成中子星.而根據科學家的計算,中子星的總質量不能大於三倍太陽的質量.如果超過了這個值,那麼將再沒有什麼力能與自身重力相抗衡了,從而引發另一次大坍縮.
這次,根據科學家的猜想,物質將不可阻擋地向著中心點進軍,直至成為一個體積趨於零、密度趨向無限大的「點」.而當它的半徑一旦收縮到一定程度(史瓦西半徑),正象我們上面介紹的那樣,巨大的引力就使得即使光也無法向外射出,從而切斷了恆星與外界的一切聯系——「黑洞」誕生了.
與別的天體相比,黑洞是顯得太特殊了.例如,黑洞有「隱身術」,人們無法直接觀察到它,連科學家都只能對它內部結構提出各種猜想.那麼,黑洞是怎麼把自己隱藏起來的呢?答案就是——彎曲的空間.我們都知道,光是沿直線傳播的.這是一個最基本的常識.可是根據廣義相對論,空間會在引力場作用下彎曲.這時候,光雖然仍然沿任意兩點間的最短距離傳播,但走的已經不是直線,而是曲線.形象地講,好像光本來是要走直線的,只不過強大的引力把它拉得偏離了原來的方向.
在地球上,由於引力場作用很小,這種彎曲是微乎其微的.而在黑洞周圍,空間的這種變形非常大.這樣,即使是被黑洞擋著的恆星發出的光,雖然有一部分會落入黑洞中消失,可另一部分光線會通過彎曲的空間中繞過黑洞而到達地球.所以,我們可以毫不費力地觀察到黑洞背面的星空,就像黑洞不存在一樣,這就是黑洞的隱身術.
更有趣的是,有些恆星不僅是朝著地球發出的光能直接到達地球,它朝其它方向發射的光也可能被附近的黑洞的強引力折射而能到達地球.這樣我們不僅能看見這顆恆星的「臉」,還同時看到它的側面、甚至後背!
根據愛因斯坦的理論,星體的引力可以解釋為其局部內巨大的質量使得周圍空間發生了扭曲(席夢思上放一個球,讓人坐在球旁邊,席夢思會被人壓得陷下去,球就會象人滾去,好像被西過去了.)黑洞的引力極為巨大,周圍空間的扭曲也就極為強烈,在這個被扭曲到甚至混亂的空間內,物質甚至可以重疊在一起,這就解釋了為什麼黑洞的體積可以是無限小.
無限大的質量除以無限小的體積,得數自然是無窮大的密度.

『伍』 黑洞巨大的引力可以扭曲時空,扭曲空間我可以理解,扭曲時間又是怎麼一回事時間難道不是一個抽象的概念

扭曲時間,好比如一條繩子你把它剪成好幾段,再將其連接,找不到開頭,也找不到結果。時間只是我們人類得出的一個概念,更確切的說不是我們在走,而是空間在走,一個空間會一步步的老化。

『陸』 黑洞的時間為什麼會變慢

時間和空間是相對。時間其實也就是空間,在黑洞裡面空間被扭曲,甚至被折疊,也就是說空間被縮小,因而時間也就變慢了。

『柒』 黑洞是改變時間還是壓縮時間

黑洞壓縮時間。
黑洞是引力最大的物體,空間被黑洞扭曲和壓縮了,時間也就被扭曲和壓縮了。
當核心中所有的物質都變成中子時收縮過程立即停止,被壓縮成一個密實的星體,同時也壓縮了內部的空間和時間。

『捌』 那位大蝦幫我解釋一下黑洞如何扭曲時間的,不要抽象過程 形象點

黑洞黑洞的存在會令周圍的空間極度扭曲。根據廣義相對論,光線在正常的空間里以直線傳播,但當空間扭曲時,光線會隨著空間扭曲的方向而扭曲。如果能給一束射進黑洞的光線拍照的話,我們就會發現,光線呈螺旋形指向黑洞中心,因為黑洞的巨大質量已使周圍的空間扭曲得不成形了。 這就是你所說的光都不能逃出黑洞.
所以說,人既然是有形之物,假設進入黑洞,(而黑洞也正是三維與四維的連接)人也不能逃脫滅頂之災.因為光也能被扭曲,人怎麼能不被扭曲呢?所以根本不能穿過去.
說到穿越時空,我曾略有耳聞,愛因斯坦說,只要人的速度趕上光的速度,那麼時間在他身上是停滯的,如果超過光速,那麼時間就倒流,穿越時空成為可能,但是,假設這個穿越時空也存在,那麼怎麼保證人在穿越時空的時候,自己不變回嬰孩,變成塵埃呢?
所以說,還是把握現實比較重要.
黑洞是密度超大的星球,吸納一切,光也逃不了.(現在有科學家分析,宇宙中不存在黑洞,這需要進一步的證明,但是我們在學術上可以存在不同的意見)

補註:在空間體積為無限小(可認為是0)而注入質量接近無限大的狀況下,磁場無限強化的情況下黑洞真的還有實體存在嗎?
或物質的最終結局不是化為能量而是成為無限的場?

發生在黑洞周圍的有趣現象
在你閱讀以下關於黑洞的復雜科學知識以前,先知道兩個發生在黑洞周圍的兩個有趣現象。根據廣義相對論,引力越強,時間越慢。引力越小,時間越快。我們的地球因為質量較小,從一個地方到另一個地方,引力變化不大,所以時間差距也不大。比如說,喜馬拉雅山的頂部和山底只差幾千億之一秒。黑洞因為質量巨大,從一個地方到另一個地方,引力變化非常巨大,所以時間差距也巨大。如果喜馬拉亞山處在黑洞周圍,當一群登山運動員從山底出發,比如說他們所處的時間是2005年。當他們登頂後,他們發現山頂的時間是2000年。
另外一個有趣的現象是根據廣義相對論,引力越強,時間越慢,物體的長度也縮小。假如銀河系被一個黑洞所吸引,在被吸收的過程中,銀河系會變成一個米粒大小的東西。銀河系裡的一切東西包括地球都按相同比例縮小。所以在地球上的人看來,銀河系依舊是浩瀚無邊。地球上的人依舊照常上班學習,跟他們在正常情況下一樣。因為在他們看來,周圍的人和物體和他們的大小比例關系不變。他們渾然不知這一切都發生一個米粒大的世界裡。
旦因為黑洞周圍引力巨大,任何物體都不能長時間待留。假如銀河系被一個黑洞所吸引,地球上的人只有幾秒的時間去體驗第一個現象。

再從物理學觀點來解釋一下:
黑洞其實也是個星球(類似星球),只不過它的密度非常非常大, 靠近它的物體都被它的引力所約束(就好像人在地球上沒有飛走一樣),不管用多大的速度都無法脫離。對於地球來說,以第二宇宙速度(11.2km/s)來飛行就可以逃離地球,但是對於黑洞來說,它的第二宇宙速度之大,竟然超越了光速,所以連光都跑不出來,於是射進去的光沒有反射回來,我們的眼睛就看不到任何東西,只是黑色一片。

因為黑洞是不可見的,所以有人一直置疑,黑洞是否真的存在。如果真的存在,它們到底在哪裡?

黑洞的產生過程類似於中子星的產生過程;恆星的核心在自身重量的作用下迅速地收縮,發生強力爆炸。當核心中所有的物質都變成中子時收縮過程立即停止,被壓縮成一個密實的星球。但在黑洞情況下,由於恆星核心的質量大到使收縮過程無休止地進行下去,中子本身在擠壓引力自身的吸引下被碾為粉末,剩下來的是一個密度高到難以想像的物質。任何靠近它的物體都會被它吸進去,黑洞就變得像真空吸塵器一樣

為了理解黑洞的動力學和理解它們是怎樣使內部的所有事物逃不出邊界,我們需要討論廣義相對論。廣義相對論是愛因斯坦創建的引力學說,適用於行星、恆星,也適用於黑洞。愛因斯坦在1916年提出來的這一學說,說明空間和時間是怎樣因大質量物體的存在而發生畸變。簡言之,廣義相對論說物質彎曲了空間,而空間的彎曲又反過來影響穿越空間的物體的運動。

讓我們看一看愛因斯坦的模型是怎樣工作的。首先,考慮時間(空間的三維是長、寬、高)是現實世界中的第四維(雖然難於在平常的三個方向之外再畫出一個方向,但我們可以盡力去想像)。其次,考慮時空是一張巨大的綳緊了的體操表演用的彈簧床的床面。

愛因斯坦的學說認為質量使時空彎曲。我們不妨在彈簧床的床面上放一塊大石頭來說明這一情景:石頭的重量使得綳緊了的床面稍微下沉了一些,雖然彈簧床面基本上仍舊是平整的,但其中央仍稍有下凹。如果在彈簧床中央放置更多的石塊,則將產生更大的效果,使床面下沉得更多。事實上,石頭越多,彈簧床面彎曲得越厲害。

同樣的道理,宇宙中的大質量物體會使宇宙結構發生畸變。正如10塊石頭比1塊石頭使彈簧床面彎曲得更厲害一樣,質量比太陽大得多的天體比等於或小於一個太陽質量的天體使空間彎曲得厲害地多。

如果一個網球在一張綳緊了的平坦的彈簧床上滾動,它將沿直線前進。反之,如果它經過一個下凹的地方 ,則它的路徑呈弧形。同理,天體穿行時空的平坦區域時繼續沿直線前進,而那些穿越彎曲區域的天體將沿彎曲的軌跡前進。

現在再來看看黑洞對於其周圍的時空區域的影響。設想在彈簧床面上放置一塊質量非常大的石頭代表密度極大的黑洞。自然,石頭將大大地影響床面,不僅會使其表面彎曲下陷,還可能使床面發生斷裂。類似的情形同樣可以宇宙出現,若宇宙中存在黑洞,則該處的宇宙結構將被撕裂。這種時空結構的破裂叫做時空的奇異性或奇點。

現在我們來看看為什麼任何東西都不能從黑洞逃逸出去。正如一個滾過彈簧床面的網球,會掉進大石頭形成的深洞一樣,一個經過黑洞的物體也會被其引力陷阱所捕獲。而且,若要挽救運氣不佳的物體需要無窮大的能量。

我們已經說過,沒有任何能進入黑洞而再逃離它的東西。但科學家認為黑洞會緩慢地釋放其能量。著名的英國物理學家霍金在1974年證明黑洞有一個不為零的溫度,有一個比其周圍環境要高一些的溫度。依照物理學原理,一切比其周圍溫度高的物體都要釋放出熱量,同樣黑洞也不例外。一個黑洞會持續幾百萬萬億年散發能量,黑洞釋放能量稱為:霍金輻射。黑洞散盡所有能量就會消失。

處於時間與空間之間的黑洞,使時間放慢腳步,使空間變得有彈性,同時吞進所有經過它的一切。1969年,美國物理學家約翰 阿提 惠勒將這種貪得無厭的空間命名為「黑洞」。

我們都知道因為黑洞不能反射光,所以看不見。在我們的腦海中黑洞可能是遙遠而又漆黑的。但英國著名物理學家霍金認為黑洞並不如大多數人想像中那樣黑。通過科學家的觀測,黑洞周圍存在輻射,而且很可能來自於黑洞,也就是說,黑洞可能並沒有想像中那樣黑。霍金指出黑洞的放射性物質來源是一種實粒子,這些粒子在太空中成對產生,不遵從通常的物理定律。而且這些粒子發生碰撞後,有的就會消失在茫茫太空中。一般說來,可能直到這些粒子消失時,我們都未曾有機會看到它們。

霍金還指出,黑洞產生的同時,實粒子就會相應成對出現。其中一個實粒子會被吸進黑洞中,另一個則會逃逸,一束逃逸的實粒子看起來就像光子一樣。對觀察者而言,看到逃逸的實粒子就感覺是看到來自黑洞中的射線一樣。

所以,引用霍金的話就是「黑洞並沒有想像中的那樣黑」,它實際上還發散出大量的光子。

根據愛因斯坦的能量與質量守恆定律。當物體失去能量時,同時也會失去質量。黑洞同樣遵從能量與質量守恆定律,當黑洞失去能量時,黑洞也就不存在了。霍金預言,黑洞消失的一瞬間會產生劇烈的爆炸,釋放出的能量相當於數百萬顆氫彈的能量。

但你不要滿懷期望地抬起頭,以為會看到一場煙花表演。事實上,黑洞爆炸後,釋放的能量非常大,很有可能對身體是有害的。而且,能量釋放的時間也非常長,有的會超過100億至200億年,比我們宇宙的歷史還長,而徹底散盡能量則需要數萬億年的時間

「黑洞」很容易讓人望文生義地想像成一個「大黑窟窿」,其實不然。所謂「黑洞」,就是這樣一種天體:它的引力場是如此之強,就連光也不能逃脫出來。

根據廣義相對論,引力場將使時空彎曲。當恆星的體積很大時,它的引力場對時空幾乎沒什麼影響,從恆星表面上某一點發的光可以朝任何方向沿直線射出。而恆星的半徑越小,它對周圍的時空彎曲作用就越大,朝某些角度發出的光就將沿彎曲空間返回恆星表面。

等恆星的半徑小於一特定值(天文學上叫「施瓦西半徑」)時,就連垂直表面發射的光都被捕獲了。到這時,恆星就變成了黑洞。說它「黑」,是指任何物質一旦掉進去,就再不能逃出,包括光。實際上黑洞真正是「隱形」的,等一會兒我們會講到。

黑洞的形成

跟白矮星和中子星一樣,黑洞很可能也是由恆星演化而來的。

當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料(氫),由中心產生的能量已經不多了。這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量。所以在外殼的重壓之下,核心開始坍縮,直到最後形成體積小、密度大的星體,重新有能力與壓力平衡。

質量小一些的恆星主要演化成白矮星,質量比較大的恆星則有可能形成中子星。而根據科學家的計算,中子星的總質量不能大於三倍太陽的質量。如果超過了這個值,那麼將再沒有什麼力能與自身重力相抗衡了,從而引發另一次大坍縮。

這次,根據科學家的猜想,物質將不可阻擋地向著中心點進軍,直至成為一個體積很小、密度趨向很大。而當它的半徑一旦收縮到一定程度(一定小於史瓦西半徑),正象我們上面介紹的那樣,巨大的引力就使得即使光也無法向外射出,從而切斷了恆星與外界的一切聯系——「黑洞」誕生了。

除星體的終結可能產生黑洞外,還有一種特殊的黑洞——量子黑洞。這種黑洞很特殊,其史瓦西半徑很小很小,能達到十的負二十幾次方米,比一個原子還要小。與平常的黑洞不同,它並不是由很大質量的星體塌縮而形成的,而是原子塌縮而成的,因此只有一種條件下才會創造量子黑洞——大爆炸。在宇宙創生初期,巨大的溫度和壓力將單個原子或原子團壓縮成為許多量子黑洞。而這種黑洞幾乎是不可能觀測到或找到的,它目前只存在於理論中。

特殊的黑洞

與別的天體相比,黑洞是顯得太特殊了。例如,黑洞有「隱身術」,人們無法直接觀察到它,連科學家都只能對它內部結構提出各種猜想。那麼,黑洞是怎麼把自己隱藏起來的呢?答案就是——彎曲的空間。我們都知道,光是沿直線傳播的。這是一個最基本的常識。可是根據廣義相對論,空間會在引力場作用下彎曲。這時候,光雖然仍然沿任意兩點間的最短距離傳播,但走的已經不是直線,而是曲線。形象地講,好像光本來是要走直線的,只不過強大的引力把它拉得偏離了原來的方向。

在地球上,由於引力場作用很小,這種彎曲是微乎其微的。而在黑洞周圍,空間的這種變形非常大。這樣,即使是被黑洞擋著的恆星發出的光,雖然有一部分會落入黑洞中消失,可另一部分光線會通過彎曲的空間中繞過黑洞而到達地球。所以,我們可以毫不費力地觀察到黑洞背面的星空,就像黑洞不存在一樣,這就是黑洞的隱身術。

更有趣的是,有些恆星不僅是朝著地球發出的光能直接到達地球,它朝其它方向發射的光也可能被附近的黑洞的強引力折射而能到達地球。這樣我們不僅能看見這顆恆星的「臉」,還同時看到它的側面、甚至後背!

「黑洞」無疑是本世紀最具有挑戰性、也最讓人激動的天文學說之一。許多科學家正在為揭開它的神秘面紗而辛勤工作著,新的理論也不斷地提出。不過,這些當代天體物理學的最新成果不是在這里三言兩語能說清楚的。有興趣的朋友可以去參考專門的論著。

按組成來劃分,黑洞可以分為兩大類。一是暗能量黑洞,二是物理黑洞。暗能量黑洞主要由高速旋轉的巨大的暗能量組成,它內部沒有巨大的質量。巨大的暗能量以接近光速的速度旋轉,其內部產生巨大的負壓以吞噬物體,從而形成黑洞,詳情請看宇「宙黑洞論」。暗能量黑洞是星系形成的基礎,也是星團、星系團形成的基礎。物理黑洞由一顆或多顆天體坍縮形成,具有巨大的質量。當一個物理黑洞的質量等於或大於一個星系的質量時,我們稱之為奇點黑洞。暗能量黑洞的體積很大,可以有太陽系那般大。但物理黑洞的體積卻非常小,它可以縮小到一個奇點。

黑洞吸積

黑洞通常是因為它們聚攏周圍的氣體產生輻射而被發現的,這一過程被稱為吸積。高溫氣體輻射熱能的效率會嚴重影響吸積流的幾何與動力學特性。目前觀測到了輻射效率較高的薄盤以及輻射效率較低的厚盤。當吸積氣體接近中央黑洞時,它們產生的輻射對黑洞的自轉以及視界的存在極為敏感。對吸積黑洞光度和光譜的分析為旋轉黑洞和視界的存在提供了強有力的證據。數值模擬也顯示吸積黑洞經常出現相對論噴流也部分是由黑洞的自轉所驅動的。

天體物理學家用「吸積」這個詞來描述物質向中央引力體或者是中央延展物質系統的流動。吸積是天體物理中最普遍的過程之一,而且也正是因為吸積才形成了我們周圍許多常見的結構。在宇宙早期,當氣體朝由暗物質造成的引力勢阱中心流動時形成了星系。即使到了今天,恆星依然是由氣體雲在其自身引力作用下坍縮碎裂,進而通過吸積周圍氣體而形成的。行星——包括地球——也是在新形成的恆星周圍通過氣體和岩石的聚集而形成的。但是當中央天體是一個黑洞時,吸積就會展現出它最為壯觀的一面。

然而黑洞並不是什麼都吸收的,它也往外邊散發質子.

爆炸的黑洞

黑洞會發出耀眼的光芒,體積會縮小,甚至會爆炸。當英國物理學家史迪芬·霍金於1974年做此語言時,整個科學界為之震動。黑洞曾被認為是宇宙最終的沉澱所:沒有什麼可以逃出黑洞,它們吞噬了氣體和星體,質量增大,因而洞的體積只會增大,霍金的理論是受靈感支配的思維的飛躍,他結合了廣義相對論和量子理論。他發現黑洞周圍的引力場釋放出能量,同時消耗黑洞的能量和質量,這種「霍金輻射」對大多數黑洞來說可以忽略不計,而小黑洞則以極高的速度輻射能量,直到黑洞的爆炸。

奇妙的萎縮的黑洞

當一個粒子從黑洞逃逸而沒有償還它借來的能量,黑洞就會從它的引力場中喪失同樣數量的能量,而愛因斯坦的公式E=mc^2表明,能量的損失會導致質量的損失。因此,黑洞將變輕變小。

關於黑洞的文章:
自古以來,人類便一直夢想飛上藍天,可沒人知道在湛藍的天幕之外還有一個碩大的黑色空間。在這個空間有光,有水,有生命。我們美麗的地球也是其中的一員。雖然宇宙是如此絢爛多彩,但在這里也同樣是危機四伏的。小行星,紅巨星,超新星大爆炸,黑洞……

黑洞,顧名思義就是看不見的具有超強吸引力的物質。自從愛因斯坦和霍金通過猜測並進行理論推導出有這樣一種物質之後,科學家們就在不斷的探尋,求索,以避免我們的星球被毀滅。

黑洞與地球毀滅的關系

黑洞,實際上是一團質量很大的物質,其引力極大(仡今為止還未發現有比它引力更大的物質),形成一個深井。它是由質量和密度極大的恆星不斷坍縮而形成的,當恆星內部的物質核心發生極不穩定變化之後會形成一個稱為「奇點」的孤立點(有關細節請查閱愛因斯坦的廣義相對論)。他會將一切進入視界的物質吸入,任何東西不能從那裡逃脫出來(包括光)。他沒有具體形狀,也無法看見它,只能根據周圍行星的走向來判斷它的存在。也許你會因為它的神秘莫測而嚇的大叫起來,但實際上根本用不著過分擔心,雖然它有強大的吸引力但與此同時這也是判斷它位置的一個重要證據,就算它對距地球極近的物質產生影響時,我們也還有足夠的時間挽救,因為那時它的「正式邊界」還離我們很遠。況且,恆星坍縮後大部分都會成為中子星或白矮星。但這並不意味著我們就可以放鬆警惕了(誰知道下一刻被吸入的會不會是我們呢?),這也是人類研究它的原因之一。

恆星,白矮星,中子星,誇剋星,黑洞是依次的五個密度當量星體,密度最小的當然是恆星,黑洞是物質的終極形態,黑洞之後就會發生宇宙大爆炸,能量釋放出去後,又進入一個新的循環.

另外黑洞在網路中指電子郵件消息丟失或Usenet公告消失的地方。

黑洞名稱的提出

黑洞這一術語是不久以前才出現的。它是1969年美國科學家約翰·惠勒為形象描述至少可回溯到200年前的這個思想時所杜撰的名字。那時候,共有兩種光理論:一種是牛頓贊成的光的微粒說;另一種是光的波動說。我們現在知道,實際上這兩者都是正確的。由於量子力學的波粒二象性,光既可認為是波,也可認為是粒子。在光的波動說中,不清楚光對引力如何響應。但是如果光是由粒子組成的,人們可以預料,它們正如同炮彈、火箭和行星那樣受引力的影響。起先人們以為,光粒子無限快地運動,所以引力不可能使之慢下來,但是羅麥關於光速度有限的發現表明引力對之可有重要效應。

1783年,劍橋的學監約翰·米歇爾在這個假定的基礎上,在《倫敦皇家學會哲學學報》上發表了一篇文章。他指出,一個質量足夠大並足夠緊致的恆星會有如此強大的引力場,以致於連光線都不能逃逸——任何從恆星表面發出的光,還沒到達遠處即會被恆星的引力吸引回來。米歇爾暗示,可能存在大量這樣的恆星,雖然會由於從它們那裡發出的光不會到達我們這兒而使我們不能看到它們,但我們仍然可以感到它們的引力的吸引作用。這正是我們現在稱為黑洞的物體。它是名符其實的——在空間中的黑的空洞。幾年之後,法國科學家拉普拉斯侯爵顯然獨自提出和米歇爾類似的觀念。非常有趣的是,拉普拉斯只將此觀點納入他的《世界系統》一書的第一版和第二版中,而在以後的版本中將其刪去,可能他認為這是一個愚蠢的觀念。(此外,光的微粒說在19世紀變得不時髦了;似乎一切都可以以波動理論來解釋,而按照波動理論,不清楚光究竟是否受到引力的影響。)

事實上,因為光速是固定的,所以,在牛頓引力論中將光類似炮彈那樣處理實在很不協調。(從地面發射上天的炮彈由於引力而減速,最後停止上升並折回地面;然而,一個光子必須以不變的速度繼續向上,那麼牛頓引力對於光如何發生影響呢?)直到1915年愛因斯坦提出廣義相對論之前,一直沒有關於引力如何影響光的協調的理論。甚至又過了很長時間,這個理論對大質量恆星的含意才被理解。

為了理解黑洞是如何形成的,我們首先需要理解一個恆星的生命周期。起初,大量的氣體(大部分為氫)受自身的引力吸引,而開始向自身坍縮而形成恆星。當它收縮時,氣體原子相互越來越頻繁地以越來越大的速度碰撞——氣體的溫度上升。最後,氣體變得如此之熱,以至於當氫原子碰撞時,它們不再彈開而是聚合形成氦。如同一個受控氫彈爆炸,反應中釋放出來的熱使得恆星發光。這增添的熱又使氣體的壓力升高,直到它足以平衡引力的吸引,這時氣體停止收縮。這有一點像氣球——內部氣壓試圖使氣球膨脹,橡皮的張力試圖使氣球縮小,它們之間存在一個平衡。從核反應發出的熱和引力吸引的平衡,使恆星在很長時間內維持這種平衡。然而,最終恆星會耗盡了它的氫和其他核燃料。貌似大謬,其實不然的是,恆星初始的燃料越多,它則燃盡得越快。這是因為恆星的質量越大,它就必須越熱才足以抵抗引力。而它越熱,它的燃料就被用得越快。我們的太陽大概足夠再燃燒50多億年,但是質量更大的恆星可以在1億年這么短的時間內用盡其燃料, 這個時間尺度比宇宙的年齡短得多了。當恆星耗盡了燃料,它開始變冷並開始收縮。隨後發生的情況只有等到本世紀20年代末才初次被人們理解。

1928年,一位印度研究生——薩拉瑪尼安·強德拉塞卡——乘船來英國劍橋跟英國天文學家阿瑟·愛丁頓爵士(一位廣義相對論家)學習。(據記載,在本世紀20年代初有一位記者告訴愛丁頓,說他聽說世界上只有三個人能理解廣義相對論,愛丁頓停了一下,然後回答:「我正在想這第三個人是誰」。)在他從印度來英的旅途中,強德拉塞卡算出在耗盡所有燃料之後,多大的恆星可以繼續對抗自己的引力而維持自己。這個思想是說:當恆星變小時,物質粒子靠得非常近,而按照泡利不相容原理,它們必須有非常不同的速度。這使得它們互相散開並企圖使恆星膨脹。一顆恆星可因引力作用和不相容原理引起的排斥力達到平衡而保持其半徑不變,正如在它的生命的早期引力被熱所平衡一樣。

然而,強德拉塞卡意識到,不相容原理所能提供的排斥力有一個極限。恆星中的粒子的最大速度差被相對論限制為光速。這意味著,恆星變得足夠緊致之時,由不相容原理引起的排斥力就會比引力的作用小。強德拉塞卡計算出;一個大約為太陽質量一倍半的冷的恆星不能支持自身以抵抗自己的引力。(這質量現在稱為強德拉塞卡極限。)蘇聯科學家列夫·達維多維奇·蘭道幾乎在同時也得到了類似的發現。

這對大質量恆星的最終歸宿具有重大的意義。如果一顆恆星的質量比強德拉塞卡極限小,它最後會停止收縮並終於變成一顆半徑為幾千英哩和密度為每立方英寸幾百噸的「白矮星」。白矮星是它物質中電子之間的不相容原理排斥力所支持的。我們觀察到大量這樣的白矮星。第一顆被觀察到的是繞著夜空中最亮的恆星——天狼星轉動的那一顆。

蘭道指出,對於恆星還存在另一可能的終態。其極限質量大約也為太陽質量的一倍或二倍,但是其體積甚至比白矮星還小得多。這些恆星是由中子和質子之間,而不是電子之間的不相容原理排斥力所支持。所以它們被叫做中子星。它們的半徑只有10英哩左右,密度為每立方英寸幾億噸。在中子星被第一次預言時,並沒有任何方法去觀察它。實際上,很久以後它們才被觀察到。

另一方面,質量比強德拉塞卡極限還大的恆星在耗盡其燃料時,會出現一個很大的問題:在某種情形下,它們會爆炸或拋出足夠的物質,使自己的質量減少到極限之下,以避免災難性的引力坍縮。但是很難令人相信,不管恆星有多大,這總會發生。怎麼知道它必須損失重量呢?即使每個恆星都設法失去足夠多的重量以避免坍縮,如果你把更多的質量加在白矮星或中子星上,使之超過極限將會發生什麼?它會坍縮到無限密度嗎?愛丁頓為此感到震驚,他拒絕相信強德拉塞卡的結果。愛丁頓認為,一顆恆星不可能坍縮成一點。這是大多數科學家的觀點:愛因斯坦自己寫了一篇論文,宣布恆星的體積不會收縮為零。其他科學家,尤其是他以前的老師、恆星結構的主要權威——愛丁頓的敵意使強德拉塞卡拋棄了這方面的工作,轉去研究諸如恆星團運動等其他天文學問題。然而,他獲得1983年諾貝爾獎,至少部分原因在於他早年所做的關於冷恆星的質量極限的工作。

強德拉塞卡指出,不相容原理不能夠阻止質量大於強德拉塞卡極限的恆星發生坍縮。但是,根據廣義相對論,這樣的恆星會發生什麼情況呢?這個問題被一位年輕的美國人羅伯特·奧本海默於1939年首次解決。然而,他所獲得的結果表明,用當時的望遠鏡去觀察不會再有任何結果。以後,因第二次世界大戰的干擾,奧本海默本人非常密切地捲入到原子彈計劃中去。戰後,由於大部分科學家被吸引到原子和原子核尺度的物理中去,因而引力坍縮的問題被大部分人忘記了。

現在,我們從奧本海默的工作中得到一幅這樣的圖象:恆星的引力場改變了光線的路徑,使之和原先沒有恆星情況下的路徑不一樣。光錐是表示光線從其頂端發出後在空間——時間里傳播的軌道。光錐在恆星表面附近稍微向內偏折,在日食時觀察遠處恆星發出的光線,可以看到這種偏折現象。當該恆星收縮時,其表面的引力場變得很強,光線向內偏折得更多,從而使得光線從恆星逃逸變得更為困難。對於在遠處的觀察者而言,光線變得更黯淡更紅。最後,當這恆星收縮到某一臨界半徑時,表面的引力場變得如此之強,使得光錐向內偏折得這么多,以至於光線再也逃逸不出去 。根據相對論,沒有東西會走得比光還快。這樣,如果光都逃逸不出來,其他東西更不可能逃逸,都會被引力拉回去。也就是說,存在一個事件的集合或空間——時間區域,光或任何東西都不可能從該區域逃逸而到達遠處的觀察者。現在我們將這區域稱作黑洞,將其邊界稱作事件視界,它和剛好不能從黑洞逃逸的光線的軌跡相重合。

當你觀察一個恆星坍縮並形成黑洞時,為了理解你所看到的情況,切記在相對論中沒有絕對時間。每個觀測者都有自己的時間測量。由於恆星的引力場,在恆星上某人的時間將和在遠處某人的時間不同。假定在坍縮星表面有一無畏的航天員和恆星一起向內坍縮,按照他的表,每一秒鍾發一信號到一個繞著該恆星轉動的空間飛船上去。在他的表的某一時刻,譬如11點鍾,恆星剛好收縮到它的臨界半徑,此時引力場強到沒有任何東西可以逃逸出去,他的信號再也不能傳到空間飛船了。當11點到達時,他在空間飛船中的夥伴發現,航天員發來的一串信號的時間間隔越變越長。但是這個效應在10點59分59秒之前是非常微小的。在收到10點59分58秒和10點59分59秒發出的兩個信號之間,他們只需等待比一秒鍾稍長一點的時間,然而他們必須為11點發出的信號等待無限長的時間。

『玖』 黑洞是如何影響時間的

我們的恆星,太陽,將會安靜的死亡。太陽是一顆只有平均質量和威力的恆星。在大約50億年裡,太陽燃燒完它最後的氫燃料之後,其外層將會漸漸散開,核心最終會被壓縮成白矮星,成為一顆地球大小的宇宙余燼。

對於一顆比太陽大十倍的恆星來說,其死亡更具戲劇性。它的外層在超新星爆炸中被炸入太空,幾周之內,它將是宇宙中最亮的星體之一。與此同時,它的核心被重力擠壓成中子星,成為一個直徑20千米旋轉的滾珠。一個方糖大小的中子星碎片在地球上會重達10億噸;中子星的引力非常大,如果你往它上面扔一顆棉花糖,它撞擊而產生的能量相當於一顆原子彈。

大約在同一時期,人們對黑洞的見解發生了根本性的轉變,這主要是由於發明了觀測太空的新方法。自人類誕生以來,我們的觀測就被限制在可見光范圍之內。但是在20世紀60年代,x光和無線電波望遠鏡開始被廣泛使用。這使得天文學家能夠收集穿透星際塵埃的波長的光,讓我們看到星系內部的構架,就像醫院里的x光一樣。

令人驚奇的是,科學家們發現,在大多數星系的中心——宇宙中有超過1000億個星系——是一個充滿恆星、氣體和塵埃的凸起。在這個混沌凸起的正中心,幾乎在所有被觀測的星系中,包括我們的銀河系,都有一個非常重、非常緊密的物體,它具有非常驚人的引力,無論你如何觀測它,都只有一個可能的解釋:那是一個黑洞。

『拾』 如果黑洞把時間扭曲到它停止的點,它怎麼可能形成呢

黑洞的奇點是維里定理的一個微擾,它將熵聚焦到一個共同的重心上。熵衡量的是物體各部分運動的獨立性。通過膨脹來區分它們的慣性系,使這些部分相互獨立。

膨脹是時間固有維度的標度特徵。這個維度在整個宇宙中有一個恆定的總值,形成一個連續的場。每個空間都有一個縮放值,無一例外。去掉縮放值,就什麼都沒有了。

從靜止參考系的觀測者的角度來看,當一個物體受到的引力越大,它的時間流逝速度就會越小。根據「引力時間膨脹效應」,當我們處於靜止參考系來觀察一個物體靠近一個引力巨大的天體時,比如說黑洞,當這個物體離黑洞越來越近,時間就會過得越來越慢,由於黑洞的引力近乎無限大,那麼這個物體的時間也就無限的趨近於零。那麼,從我們的角度來看,這個物體似乎就永遠進不了黑洞!

熱點內容
為什麼蘋果主板很精密 發布:2025-03-07 08:02:58 瀏覽:398
為什麼隔一段時間會特別困 發布:2025-03-07 07:45:32 瀏覽:115
蘋果手機為什麼在其他國貴 發布:2025-03-07 07:45:28 瀏覽:204
為什麼武媚娘和李世民沒有孩子 發布:2025-03-07 07:40:31 瀏覽:834
為什麼我喜歡的男人都沒錢 發布:2025-03-07 07:39:54 瀏覽:371
蘋果手機為什麼看視頻模糊不清了啊 發布:2025-03-07 07:35:31 瀏覽:674
點完蚊香片為什麼人的眼睛會發癢 發布:2025-03-07 07:26:56 瀏覽:972
減肥期間晚上稱體重為什麼會重 發布:2025-03-07 07:17:37 瀏覽:261
淘寶設置內置密碼為什麼沒效果 發布:2025-03-07 07:16:22 瀏覽:532
在別的軟體中為什麼不能回復微信 發布:2025-03-07 07:07:45 瀏覽:955