時間序列為什麼用對數收益率
發布時間: 2023-09-12 12:59:36
㈠ 在統計學中為什麼要對變數取對數
1、時間序列和面板數據, 都要做平穩的單位根檢驗, 取對數一般能使序列平穩(stationary), 不然就取差分進行平穩。
2、能使模型的殘差呈現隨機的特性, 而不是趨勢或者截距。
3、減少共線性和異方差(heteroscedasticity)出現的概率。
4、有經濟學意義上, 比如增長率, 變化率和彈性。
5、統計學認為變數具有內在的指數增長的趨勢, 取對數可以讓聯合分布 (對應的F-statistics)呈現正態, level形式的數據, 特別是時間序列, 最好做Lavene檢驗。
6、Log-linearization,取對數方便最小二乘的線性擬合,乘積運算用對數就變成了求和。
則有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多個值,ln(-1)=(2k+1)πi。這樣,任意一個負數的自然對數都具有周期性的多個值。例如:ln(-5)=(2k+1)πi+ln 5。
對數在數學內外有許多應用。這些事件中的一些與尺度不變性的概念有關。例如,鸚鵡螺的殼的每個室是下一個的大致副本,由常數因子縮放。這引起了對數螺旋。Benford關於領先數字分配的定律也可以通過尺度不變性來解釋。對數也與自相似性相關。
例如,對數演算法出現在演算法分析中,通過將演算法分解為兩個類似的較小問題並修補其解決方案來解決問題。自相似幾何形狀的尺寸,即其部分類似於整體圖像的形狀也基於對數。對數刻度對於量化與其絕對差異相反的值的相對變化是有用的。
此外,由於對數函數log(x)對於大的x而言增長非常緩慢,所以使用對數標度來壓縮大規模科學數據。對數也出現在許多科學公式中,例如Tsiolkovsky火箭方程,Fenske方程或能斯特方程。
熱點內容