路程除時間為什麼等於速度差
㈠ 為什麼路程除以時間就可以表示物體運動快慢
在物理學中用速度表示物體運動的快慢,比較物體運動快慢的方法有兩種:
1、相同時間比較路程,路程長運動快;
2、相同路程比較時間,時間短運動快。
為了更好的表示物體運動的快慢,物理學中用速度來表示物體運動的快慢和方向。速度在數值上等於物體運動的位移跟發生這段位移所用的時間的比值。速度的計算公式為v=Δs/Δt。國際單位制中速度的單位是米每秒。
(1)路程除時間為什麼等於速度差擴展閱讀:
速度在位移相同的情況下,比較所用時間的長短。用的時間短,跑得快;用的時間長,跑得慢。物體在任何時刻都是存在與空間中的,物體呆在空間中任一點是有一定時間的。寫成公式的形式就是Z=1/V=t/s。對於Z我們可以引入物理概念,由於Z等於速度的倒數,我們可以叫度速。那麼度速的單位就是「秒每米」,符號是s/m.度速跟速度一樣,不但有大小,而且有方向,是矢量。在物理學中用速度表示物體運動的快慢,比較物體運動快慢的方法有兩種:
1、相同時間比較路程,路程長運動快;
2、相同路程比較時間,時間短運動快。
為了更好的表示物體運動的快慢,物理學中用速度來表示物體運動的快慢和方向。速度在數值上等於物體運動的位移跟發生這段位移所用的時間的比值。速度的計算公式為v=Δs/Δt。國際單位制中速度的單位是米每秒。
(1)路程除時間為什麼等於速度差擴展閱讀:
速度在位移相同的情況下,比較所用時間的長短。用的時間短,跑得快;用的時間長,跑得慢。物體在任何時刻都是存在與空間中的,物體呆在空間中任一點是有一定時間的。寫成公式的形式就是Z=1/V=t/s。對於Z我們可以引入物理概念,由於Z等於速度的倒數,我們可以叫度速。那麼度速的單位就是「秒每米」,符號是s/m.度速跟速度一樣,不但有大小,而且有方向,是矢量。
㈡ 為什麼路程除以時間等於速度
舉個例子:假如路程為4公里,時間為2小時,那麼便可以理解為一小時行的路程為一份,2小時便有兩份,而這兩份對應的是4公里,現求每小時行多少公里,就是求每份的量,就把4公里(也就是全程)分成兩份,當中的一份便為一小時行的量(也就是每小時行的路程,簡稱為速度)。
希望對你有幫助。
㈢ 追及環形路程為什麼總路程除以總時間就是相差時間相差速度
路程差=路程1-路程2,路程1=速度1×時間,路程2=速度2×時間,
路程1-路程2=速度1×時間-速度2×時間=(速度1-速度2)×時間。
兩個物體運動時,運動的方向與運動的速度有著很大關系,當兩個物體「相向運動」或「相背運動」時,此時的運動速度都是「兩個物體運動速度的和」(簡稱速度和),當兩個物體「同向運動」時,此時兩個物體的追及的速度就變為了「兩個物體運動速度的差」(簡稱速度差)。
當物體運動有外作用力時,速度也會發生變化。如人在賽跑時順風跑和逆風跑;船在河中順水而下和逆水而上。此時人在順風跑是運動的速度就應該等於人本身運動的速度加上風的速度,人在逆風跑時運動的速度就應該等於人本身的速度減去風的速度。
再比較一下人順風的速度和逆風的速度會發現,順風速度與逆風速度之間相差著兩個風的速度;同樣比較「順水而下」與「逆流而上」,兩個速度之間也相差著兩個「水流的速度」。
(3)路程除時間為什麼等於速度差擴展閱讀
甲、乙兩人從矩形跑道的A點同時開始沿相反方向繞行,在O點相遇,如圖所示,已知甲的速度為5m/s,乙的速度為3m/s,跑道OC段長度為50m,如果他們從A點同時開始都沿A→B→C→D同向繞行,則再一次相遇的時間是多少s。
分析根據圖形可知,甲和乙相遇時,甲跑的路程為sAB+sBC+50m,乙跑的路程為sAB+sBC﹣50m,由此可知甲比乙多運動100m路程,據此關系求出甲和乙運動的時間,進而求出跑道的周長。
如果他們從A點同時開始都沿A→B→C→D同向繞行,則再一次相遇時,甲比乙多跑一周,據此解出時間.
解:s甲=s乙+100m,
v甲t=v乙t+100m,
5m/s×t=3m/s×t+100m,
第一次相遇時的時間:t=50s;
甲跑的路程:s甲=v甲t=5m/s×50s=250m,
乙跑的路程:s乙=v乙t=3m/s×50s=150m,
跑到一周的長度:s=s甲+s乙=250m+150m=400m;
他們從A點同時開始都沿A→B→C→D同向繞行,則再一次相遇時,甲比乙多跑一周。
s甲′=s乙′+400m,
v甲t′=v乙t′+400m,
5m/s×t′=3m/s×t′+400m,
第一次相遇時的時間:t′=200s。