多元回歸為什麼要控制時間和行業
『壹』 spss做多元線性回歸分析時怎麼控制行業變數
您可以使用階層回歸分析。之後,所謂的「控制變數」是尋找出這些變數的影響來預測因變數其它變數的作用是如何。
例如,在該分析中,人口統計變數(性別,年齡等)作為控制變數,在分層回歸到block1,再放入block2的其他變數。通過觀察結果可以人口統計學變數排除後,可以看出派生,其他變數方差增長的貢獻率。
『貳』 回歸模型中,「控制年度和行業」是什麼意思
在回歸分析加入年度變數和行業變數。
多元回歸分析的X變數一般分為兩種:解釋變數和控制變數,解釋變數往往是論文中作者希望關注的變數,而控制變數則是也可以影響Y變數、X變數,但是並不是作者需要研究的變數,但是為了研究的嚴謹必須也考慮。
回歸模型(regression model)對統計關系進行定量描述的一種數學模型。如多元線性回歸的數學模型可以表示為y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1個待估計的參數,εi是相互獨立且服從同一正態分布N(0,σ2)的隨機變數,y是隨機變數;x可以是隨機變數,也可以是非隨機變數,βi稱為回歸系數,表徵自變數對因變數影響的程度。
SPSS可以實現這種回歸,絕大多數的統計軟體都可以。
(2)多元回歸為什麼要控制時間和行業擴展閱讀:
使用回歸分析的好處良多。具體如下:
1、它表明自變數和因變數之間的顯著關系;
2、它表明多個自變數對一個因變數的影響強度。
3、回歸分析也允許我們去比較那些衡量不同尺度的變數之間的相互影響,如價格變動與促銷活動數量之間聯系。這些有利於幫助市場研究人員,數據分析人員以及數據科學家排除並估計出一組最佳的變數,用來構建預測模型。
參考資料:網路-回歸模型
『叄』 多元回歸方程在設定時要選擇控制變數。控制變數有什麼作用如何理解控制變數
控制一定影響因素從而得到真實的結果。控制變數在物理學的概念是指那些除了實驗因素(自變數)以外的所有影響實驗結果的變數,這些變數不是本實驗所要研究的變數,所以又稱無關變數、無關因子、非實驗因素或非實驗因子。只有將自變數以外一切能引起因變數變化的變數控制好,才能弄清實驗中的因果關系。
『肆』 回歸一定要控制行業和省份嗎
不一定,如果是類別控制變數,一定要轉為啞變數。
在構建回歸模型時,如果自變數X為連續性變數,回歸系數β可以解釋為:在其他自變數不變的條件下,X每改變一個單位,所引起的因變數Y的平均變化量;如果自變數X為二分類變數,例如是否飲酒(1=是,0=否),則回歸系數β可以解釋為:其他自變數不變的條件下,X=1(飲酒者)與X=0(不飲酒者)相比,所引起的因變數Y的平均變化量。
當自變數X為多分類變數時,例如職業、學歷、血型、疾病嚴重程度等等,此時僅用一個回歸系數來解釋多分類變數之間的變化關系,及其對因變數的影響,就顯得太不理想。
『伍』 【營銷調研中】多元回歸的目的、效果判斷和應用
現代統計學
1.因子分析(Factor Analysis)
因子分析的基本目的就是用少數幾個因子去描述許多指標或因素之間的聯系,即將相關比較密切的幾個變數歸在同一類中,每一類變數就成為一個因子(之所以稱其為因子,是因為它是不可觀測的,即不是具體的變數),以較少的幾個因子反映原資料的大部分信息。
運用這種研究技術,我們可以方便地找出影響消費者購買、消費以及滿意度的主要因素是哪些,以及它們的影響力(權重)運用這種研究技術,我們還可以為市場細分做前期分析。
2.主成分分析
主成分分析主要是作為一種探索性的技術,在分析者進行多元數據分析之前,用主成分分析來分析數據,讓自己對數據有一個大致的了解是非常重要的。主成分分析一般很少單獨使用:a,了解數據。(screening the data),b,和cluster analysis一起使用,c,和判別分析一起使用,比如當變數很多,個案數不多,直接使用判別分析可能無解,這時候可以使用主成份發對變數簡化。(rece dimensionality)d,在多元回歸中,主成分分析可以幫助判斷是否存在共線性(條件指數),還可以用來處理共線性。
******************************************************************************************************************
主成分分析和因子分析的區別
1、因子分析中是把變數表示成各因子的線性組合,而主成分分析中則是把主成分表示成個變數的線性組合。
2、主成分分析的重點在於解釋個變數的總方差,而因子分析則把重點放在解釋各變數之間的協方差。
3、主成分分析中不需要有假設(assumptions),因子分析則需要一些假設。因子分析的假設包括:各個共同因子之間不相關,特殊因子(specific factor)之間也不相關,共同因子和特殊因子之間也不相關。
4、主成分分析中,當給定的協方差矩陣或者相關矩陣的特徵值是唯一的時候,的主成分一般是獨特的;而因子分析中因子不是獨特的,可以旋轉得到不同的因子。
5、在因子分析中,因子個數需要分析者指定(spss根據一定的條件自動設定,只要是特徵值大於1的因子進入分析),而指定的因子數量不同而結果不同。在主成分分析中,成分的數量是一定的,一般有幾個變數就有幾個主成分。
和主成分分析相比,由於因子分析可以使用旋轉技術幫助解釋因子,在解釋方面更加有優勢。大致說來,當需要尋找潛在的因子,並對這些因子進行解釋的時候,更加傾向於使用因子分析,並且藉助旋轉技術幫助更好解釋。而如果想把現有的變數變成少數幾個新的變數(新的變數幾乎帶有原來所有變數的信息)來進入後續的分析,則可以使用主成分分析。當然,這中情況也可以使用因子得分做到。所以這中區分不是絕對的。
總得來說,主成分分析主要是作為一種探索性的技術,在分析者進行多元數據分析之前,用主成分分析來分析數據,讓自己對數據有一個大致的了解是非常重要的。主成分分析一般很少單獨使用:a,了解數據。(screening the data),b,和cluster analysis一起使用,c,和判別分析一起使用,比如當變數很多,個案數不多,直接使用判別分析可能無解,這時候可以使用主成份發對變數簡化。(rece dimensionality)d,在多元回歸中,主成分分析可以幫助判斷是否存在共線性(條件指數),還可以用來處理共線性。
在演算法上,主成分分析和因子分析很類似,不過,在因子分析中所採用的協方差矩陣的對角元素不在是變數的方差,而是和變數對應的共同度(變數方差中被各因子所解釋的部分)。
******************************************************************************************************************
3.聚類分析(Cluster Analysis)
聚類分析是直接比較各事物之間的性質,將性質相近的歸為一類,將性質差別較大的歸入不同的類的分析技術 。
在市場研究領域,聚類分析主要應用方面是幫助我們尋找目標消費群體,運用這項研究技術,我們可以劃分出產品的細分市場,並且可以描述出各細分市場的人群特徵,以便於客戶可以有針對性的對目標消費群體施加影響,合理地開展工作。
4.判別分析(Discriminatory Analysis)
判別分析(Discriminatory Analysis)的任務是根據已掌握的1批分類明確的樣品,建立較好的判別函數,使產生錯判的事例最少,進而對給定的1個新樣品,判斷它來自哪個總體。
根據資料的性質,分為定性資料的判別分析和定量資料的判別分析;採用不同的判別准則,又有費歇、貝葉斯、距離等判別方法。
費歇(FISHER)判別思想是投影,使多維問題簡化為一維問題來處理。選擇一個適當的投影軸,使所有的樣品點都投影到這個軸上得到一個投影值。對這個投影軸的方向的要求是:使每一類內的投影值所形成的類內離差盡可能小,而不同類間的投影值所形成的類間離差盡可能大。
貝葉斯(BAYES)判別思想是根據先驗概率求出後驗概率,並依據後驗概率分布作出統計推斷。所謂先驗概率,就是用概率來描述人們事先對所研究的對象的認識的程度;所謂後驗概率,就是根據具體資料、先驗概率、特定的判別規則所計算出來的概率。它是對先驗概率修正後的結果。
距離判別思想是根據各樣品與各母體之間的距離遠近作出判別。即根據資料建立關於各母體的距離判別函數式,將各樣品數據逐一代入計算,得出各樣品與各母體之間的距離值,判樣品屬於距離值最小的那個母體。
5.對應分析(Correspondence Analysis)
對應分析是一種用來研究變數與變數之間聯系緊密程度的研究技術。
運用這種研究技術,我們可以獲取有關消費者對產品品牌定位方面的圖形,從而幫助您及時調整營銷策略,以便使產品品牌在消費者中能樹立起正確的形象。
這種研究技術還可以用於檢驗廣告或市場推廣活動的效果,我們可以通過對比廣告播出前或市場推廣活動前與廣告播出後或市場推廣活動後消費者對產品的不同認知圖來看出廣告或市場推廣活動是否成功的向消費者傳達了需要傳達的信息。
6.典型相關分析
典型相關分析是分析兩組隨機變數間線性密切程度的統計方法,是兩變數間線性相關分析的拓廣。各組隨機變數中既可有定量隨機變數,也可有定性隨機變數(分析時須F6說明為定性變數)。本法還可以用於分析高維列聯表各邊際變數的線性關系。
******************************************************************************************************************
注意:
1.嚴格地說,一個典型相關系數描述的只是一對典型變數之間的相關,而不是兩個變數組之間的相關。而各對典型變數之間構成的多維典型相關才共同揭示了兩個觀測變數組之間的相關形式。
2.典型相關模型的基本假設和數據要求
要求兩組變數之間為線性關系,即每對典型變數之間為線性關系;
每個典型變數與本組所有觀測變數的關系也是線性關系。如果不是線性關系,可先線性化:如經濟水平和收入水平與其他一些社會發展水之間並不是線性關系,可先取對數。即log經濟水平,log收入水平。
3.典型相關模型的基本假設和數據要求
所有觀測變數為定量數據。同時也可將定性數據按照一定形式設為虛擬變數後,再放入典型相關模型中進行分析。
******************************************************************************************************************
7.多維尺度分析(Multi-dimension Analysis)
多維尺度分析(Multi-dimension Analysis) 是市場研究的一種有力手段,它可以通過低維空間(通常是二維空間)展示多個研究對象(比如品牌)之間的聯系,利用平面距離來反映研究對象之間的相似程度。由於多維尺度分析法通常是基於研究對象之間的相似性(距離)的,只要獲得了兩個研究對象之間的距離矩陣,我們就可以通過相應統計軟體做出他們的相似性知覺圖。
在實際應用中,距離矩陣的獲得主要有兩種方法:一種是採用直接的相似性評價,先所有評價對象進行兩兩組合,然後要求被訪者所有的這些組合間進行直接相似性評價,這種方法我們稱之為直接評價法;另一種為間接評價法,由研究人員根據事先經驗,找出影響人們評價研究對象相似性的主要屬性,然後對每個研究對象,讓被訪者對這些屬性進行逐一評價,最後將所有屬性作為多維空間的坐標,通過距離變換計算對象之間的距離。
******************************************************************************************************************
多維尺度分析的主要思路是利用對被訪者對研究對象的分組,來反映被訪者對研究對象相似性的感知,這種方法具有一定直觀合理性。同時該方法實施方便,調查中被訪者負擔較小,很容易得到理解接受。當然,該方法的不足之處是犧牲了個體距離矩陣,由於每個被訪者個體的距離矩陣只包含1與0兩種取值,相對較為粗糙,個體距離矩陣的分析顯得比較勉強。但這一點是完全可以接受的,因為對大多數研究而言,我們並不需要知道每一個體的空間知覺圖。
******************************************************************************************************************
******************************************************************************************************************
多元統計分析是統計學中內容十分豐富、應用范圍極為廣泛的一個分支。在自然科學和社會科學的許多學科中,研究者都有可能需要分析處理有多個變數的數據的問題。能否從表面上看起來雜亂無章的數據中發現和提煉出規律性的結論,不僅對所研究的專業領域要有很好的訓練,而且要掌握必要的統計分析工具。對實際領域中的研究者和高等院校的研究生來說,要學習掌握多元統計分析的各種模型和方法,手頭有一本好的、有長久價值的參考書是非常必要的。這樣一本書應該滿足以下條件:首先,它應該是「淺入深出」的,也就是說,既可供初學者入門,又能使有較深基礎的人受益。其次,它應該是既側重於應用,又兼顧必要的推理論證,使學習者既能學到「如何」做,而且在一定程度上了解「為什麼」這樣做。最後,它應該是內涵豐富、全面的,不僅要基本包括各種在實際中常用的多元統計分析方法,而且還要對現代統計學的最新思想和進展有所介紹、交代。
******************************************************************************************************************
******************************************************************************************************************
因子分析
主成分分析通過線性組合將原變數綜合成幾個主成分,用較少的綜合指標來代替原來較多的指標(變數)。在多變數分析中,某些變數間往往存在相關性。是什麼原因使變數間有關聯呢?是否存在不能直接觀測到的、但影響可觀測變數變化的公共因子?因子分析(Factor Analysis)就是尋找這些公共因子的模型分析方法,它是在主成分的基礎上構築若干意義較為明確的公因子,以它們為框架分解原變數,以此考察原變數間的聯系與區別。
例如,隨著年齡的增長,兒童的身高、體重會隨著變化,具有一定的相關性,身高和體重之間為何會有相關性呢?因為存在著一個同時支配或影響著身高與體重的生長因子。那麼,我們能否通過對多個變數的相關系數矩陣的研究,找出同時影響或支配所有變數的共性因子呢?因子分析就是從大量的數據中「由表及裡」、「去粗取精」,尋找影響或支配變數的多變數統計方法。
可以說,因子分析是主成分分析的推廣,也是一種把多個變數化為少數幾個綜合變數的多變數分析方法,其目的是用有限個不可觀測的隱變數來解釋原始變數之間的相關關系。
因子分析主要用於:1、減少分析變數個數;2、通過對變數間相關關系探測,將原始變數進行分類。即將相關性高的變數分為一組,用共性因子代替該組變數。
1. 因子分析模型
因子分析法是從研究變數內部相關的依賴關系出發,把一些具有錯綜復雜關系的變數歸結為少數幾個綜合因子的一種多變數統計分析方法。它的基本思想是將觀測變數進行分類,將相關性較高,即聯系比較緊密的分在同一類中,而不同類變數之間的相關性則較低,那麼每一類變數實際上就代表了一個基本結構,即公共因子。對於所研究的問題就是試圖用最少個數的不可測的所謂公共因子的線性函數與特殊因子之和來描述原來觀測的每一分量。
因子分析模型描述如下:
(1)X = (x1,x2,…,xp)¢是可觀測隨機向量,均值向量E(X)=0,協方差陣Cov(X)=∑,且協方差陣∑與相關矩陣R相等(只要將變數標准化即可實現)。
(2)F = (F1,F2,…,Fm)¢ (m<p)是不可測的向量,其均值向量E(F)=0,協方差矩陣Cov(F) =I,即向量的各分量是相互獨立的。
(3)e = (e1,e2,…,ep)¢與F相互獨立,且E(e)=0, e的協方差陣∑是對角陣,即各分量e之間是相互獨立的,則模型:
x1 = a11F1+ a12F2 +…+a1mFm + e1
x2 = a21F1+a22F2 +…+a2mFm + e2
………
xp = ap1F1+ ap2F2 +…+apmFm + ep
稱為因子分析模型,由於該模型是針對變數進行的,各因子又是正交的,所以也稱為R型正交因子模型。
其矩陣形式為: x =AF + e .
其中:
x=,A=,F=,e=
這里,
(1)m £ p;
(2)Cov(F,e)=0,即F和e是不相關的;
(3)D(F) = Im ,即F1,F2,…,Fm不相關且方差均為1;
D(e)=,即e1,e2,…,ep不相關,且方差不同。
我們把F稱為X的公共因子或潛因子,矩陣A稱為因子載荷矩陣,e 稱為X的特殊因子。
A = (aij),aij為因子載荷。數學上可以證明,因子載荷aij就是第i變數與第j因子的相關系數,反映了第i變數在第j因子上的重要性。
2. 模型的統計意義
模型中F1,F2,…,Fm叫做主因子或公共因子,它們是在各個原觀測變數的表達式中都共同出現的因子,是相互獨立的不可觀測的理論變數。公共因子的含義,必須結合具體問題的實際意義而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之間以及特殊因子與所有公共因子之間都是相互獨立的。模型中載荷矩陣A中的元素(aij)是為因子載荷。因子載荷aij是xi與Fj的協方差,也是xi與Fj的相關系數,它表示xi依賴Fj的程度。可將aij看作第i個變數在第j公共因子上的權,aij的絕對值越大(|aij|£1),表明xi與Fj的相依程度越大,或稱公共因子Fj對於xi的載荷量越大。為了得到因子分析結果的經濟解釋,因子載荷矩陣A中有兩個統計量十分重要,即變數共同度和公共因子的方差貢獻。
因子載荷矩陣A中第i行元素之平方和記為hi2,稱為變數xi的共同度。它是全部公共因子對xi的方差所做出的貢獻,反映了全部公共因子對變數xi的影響。hi2大表明x的第i個分量xi對於F的每一分量F1,F2,…,Fm的共同依賴程度大。
將因子載荷矩陣A的第j列( j =1,2,…,m)的各元素的平方和記為gj2,稱為公共因子Fj對x的方差貢獻。gj2就表示第j個公共因子Fj對於x的每一分量xi(i=1,2,…,p)所提供方差的總和,它是衡量公共因子相對重要性的指標。gj2越大,表明公共因子Fj對x的貢獻越大,或者說對x的影響和作用就越大。如果將因子載荷矩陣A的所有gj2 ( j =1,2,…,m)都計算出來,使其按照大小排序,就可以依此提煉出最有影響力的公共因子。
3. 因子旋轉
建立因子分析模型的目的不僅是找出主因子,更重要的是知道每個主因子的意義,以便對實際問題進行分析。如果求出主因子解後,各個主因子的典型代表變數不很突出,還需要進行因子旋轉,通過適當的旋轉得到比較滿意的主因子。
旋轉的方法有很多,正交旋轉(orthogonal rotation)和斜交旋轉(oblique rotation)是因子旋轉的兩類方法。最常用的方法是最大方差正交旋轉法(Varimax)。進行因子旋轉,就是要使因子載荷矩陣中因子載荷的平方值向0和1兩個方向分化,使大的載荷更大,小的載荷更小。因子旋轉過程中,如果因子對應軸相互正交,則稱為正交旋轉;如果因子對應軸相互間不是正交的,則稱為斜交旋轉。常用的斜交旋轉方法有Promax法等。
4.因子得分
因子分析模型建立後,還有一個重要的作用是應用因子分析模型去評價每個樣品在整個模型中的地位,即進行綜合評價。例如地區經濟發展的因子分析模型建立後,我們希望知道每個地區經濟發展的情況,把區域經濟劃分歸類,哪些地區發展較快,哪些中等發達,哪些較慢等。這時需要將公共因子用變數的線性組合來表示,也即由地區經濟的各項指標值來估計它的因子得分。
設公共因子F由變數x表示的線性組合為:
Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m
該式稱為因子得分函數,由它來計算每個樣品的公共因子得分。若取m=2,則將每個樣品的p個變數代入上式即可算出每個樣品的因子得分F1和F2,並將其在平面上做因子得分散點圖,進而對樣品進行分類或對原始數據進行更深入的研究。
但因子得分函數中方程的個數m小於變數的個數p,所以並不能精確計算出因子得分,只能對因子得分進行估計。估計因子得分的方法較多,常用的有回歸估計法,Bartlett估計法,Thomson估計法。
(1)回歸估計法
F = X b = X (X ¢X)-1A¢ = XR-1A¢ (這里R為相關陣,且R = X ¢X )。
(2)Bartlett估計法
Bartlett估計因子得分可由最小二乘法或極大似然法導出。
F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X
(3)Thomson估計法
在回歸估計法中,實際上是忽略特殊因子的作用,取R = X ¢X,若考慮特殊因子的作,此時R = X ¢X+W,於是有:
F = XR-1A¢ = X (X ¢X+W)-1A¢
這就是Thomson估計的因子得分,使用矩陣求逆演算法(參考線性代數文獻)可以將其轉換為:
F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢
5. 因子分析的步驟
因子分析的核心問題有兩個:一是如何構造因子變數;二是如何對因子變數進行命名解釋。因此,因子分析的基本步驟和解決思路就是圍繞這兩個核心問題展開的。
(i)因子分析常常有以下四個基本步驟:
(1)確認待分析的原變數是否適合作因子分析。
(2)構造因子變數。
(3)利用旋轉方法使因子變數更具有可解釋性。
(4)計算因子變數得分。
(ii)因子分析的計算過程:
(1)將原始數據標准化,以消除變數間在數量級和量綱上的不同。
(2)求標准化數據的相關矩陣;
(3)求相關矩陣的特徵值和特徵向量;
(4)計算方差貢獻率與累積方差貢獻率;
(5)確定因子:
設F1,F2,…, Fp為p個因子,其中前m個因子包含的數據信息總量(即其累積貢獻率)不低於80%時,可取前m個因子來反映原評價指標;
(6)因子旋轉:
若所得的m個因子無法確定或其實際意義不是很明顯,這時需將因子進行旋轉以獲得較為明顯的實際含義。
(7)用原指標的線性組合來求各因子得分:
採用回歸估計法,Bartlett估計法或Thomson估計法計算因子得分。
(8)綜合得分
以各因子的方差貢獻率為權,由各因子的線性組合得到綜合評價指標函數。
F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )
此處wi為旋轉前或旋轉後因子的方差貢獻率。
(9)得分排序:利用綜合得分可以得到得分名次。
******************************************************************************************************************
******************************************************************************************************************
在採用多元統計分析技術進行數據處理、建立宏觀或微觀系統模型時,需要研究以下幾個方面的問題:
· 簡化系統結構,探討系統內核。可採用主成分分析、因子分析、對應分析等方法,在眾多因素中找出各個變數最佳的子集合,從子集合所包含的信息描述多變數的系統結果及各個因子對系統的影響。「從樹木看森林」,抓住主要矛盾,把握主要矛盾的主要方面,舍棄次要因素,以簡化系統的結構,認識系統的內核。
· 構造預測模型,進行預報控制。在自然和社會科學領域的科研與生產中,探索多變數系統運動的客觀規律及其與外部環境的關系,進行預測預報,以實現對系統的最優控制,是應用多元統計分析技術的主要目的。在多元分析中,用於預報控制的模型有兩大類。一類是預測預報模型,通常採用多元線性回歸或逐步回歸分析、判別分析、雙重篩選逐步回歸分析等建模技術。另一類是描述性模型,通常採用聚類分析的建模技術。
· 進行數值分類,構造分類模式。在多變數系統的分析中,往往需要將系統性質相似的事物或現象歸為一類。以便找出它們之間的聯系和內在規律性。過去許多研究多是按單因素進行定性處理,以致處理結果反映不出系統的總的特徵。進行數值分類,構造分類模式一般採用聚類分析和判別分析技術。
如何選擇適當的方法來解決實際問題,需要對問題進行綜合考慮。對一個問題可以綜合運用多種統計方法進行分析。例如一個預報模型的建立,可先根據有關生物學、生態學原理,確定理論模型和試驗設計;根據試驗結果,收集試驗資料;對資料進行初步提煉;然後應用統計分析方法(如相關分析、逐步回歸分析、主成分分析等)研究各個變數之間的相關性,選擇最佳的變數子集合;在此基礎上構造預報模型,最後對模型進行診斷和優化處理,並應用於生產實際。
『陸』 多元回歸時間序列和多因素時間序列的關系
多元回歸時間序列是指ARIMA模型下面研究的時間序列的回歸問題。
多因素時間序列一般是說同時考慮多個外生變數和內生變數的滯後項的問題,
而ARIMA就是其中用於進行回歸的一種方法,而且是最一般的方法。
ARIMA模型?http://wenku..com/view/841fcb8583d049649b66580b.html,這里有課件,但是如果你沒有接觸過時間序列的知識的話,可能很難看懂。
ARIMA模型: Autoregressive Integrated Moving Average。主要的步驟是的幾種檢驗方法(如 用自相關函數ACF和偏自相關函數PACF分析拖尾和截尾情況 或者 用DF檢驗協整關系)進行判斷,確定適當的滯後變數個數和滯後擾動項個數,以得到最好的回歸效果。然後根據變數個數分別調整數據,再進行回歸計算。
當然ARIMA模型基本如果不簡化為ARMA模型(不同時考慮滯後變數和擾動項)的話,是沒有辦法用手算的。如果想要應用操作的話,可以用SPSS解決,這個軟體不需要編程的功底。
一兩句話還是不能說明白。建議還是參照一本書,看看書中的例題就很容易明白。推薦恩德斯的《應用計量經濟學:時間序列分析》,裡面廢話少。