電廠的煤渣為什麼顏色不同
1. 為什麼鍋爐燒的煤產生的煤渣和自己家燒的不一樣
不一樣,家中的煤是煤塊,有時為了壓火還摻雜一些泥土,並且火焰的溫度不夠高,燃燒時間長久。電廠的煤是煤粉,火焰溫度高,1600多度,燃燒時間非常短,4秒結束。即使流化床的鍋爐燒煤塊,火焰溫度也非常高,煤的燃盡率非常高。
2. 煤矸石 煤渣 煤灰粉煤灰 水渣什麼區別 什麼用途
煤矸石
是煤炭中夾雜的石塊,發熱值比較低。
煤渣
是煤炭燃燒的塊狀固體殘渣。
煤灰
是煤炭燃燒後煙氣除塵系統產生的微細的固體殘渣。
粉煤灰特指出燃煤電廠產生的、通過水淬的細粒固體殘渣。
水渣,高爐煉鐵時高爐中出來的熔融的爐渣,通過水淬後產生的粒狀固體殘渣。燃煤行業是不是也使用水渣的概念,不確定。
3. 燒過的煤渣里有黃色金屬塊,像黃金的顏色,很重,是什麼呢
金屬混合物,含銅比較多。
4. 電廠粉煤灰是土黃色
電廠可能是燒的焦碳,不認識焦碳的人總以為是煤.焦碳怎麼來的你自己可以去查下,我就不多說了,如果黑色的,有兩種可能,如果焦碳沒完全燃燒,留下的當然是黑色的,如果完會燃燒了,那就要看焦碳裡面的灰份,經燃燒後是什麼顏色的.如果你不知道什麼是灰份,那自己去查.我不可能全寫出來!
家裡燒的鋒竄煤是正宗的煤,裡面摻土了.燒完後,就是大量的燒過的土,如果做煤的廠用的是燒了是黃色的土,結果當然是黃色.而且,土經燒後,多半是黃色.
留下的土的顏色與溫度關系不大,因為長時間燃燒,留下的多半是灰份,除非沒燒完!
5. 電廠灰是什麼
其實就是粉煤灰
我國是個產煤大國,以煤炭為電力生產基本燃料。近年來,我國的能源工業穩步發展,發電能力年增長率為7.3%,電力工業的迅速發展,帶來了粉煤灰排放量的急劇增加,燃煤熱電廠每年所排放的粉煤灰總量逐年增加,1995年粉煤灰排放量達1.25億噸,2000年約為1.5億噸,到2010年將達到3億噸,給我國的國民經濟建設及生態環境造成巨大的壓力。另一方面,我國又是一個人均佔有資源儲量有限的國家,粉煤灰的綜合利用,變廢為寶、變害為利,已成為我國經濟建設中一項重要的技術經濟政策,是解決我國電力生產環境污染,資源缺乏之間矛盾的重要手段,也是電力生產所面臨解決的任務之一。經過開發,粉煤灰在建工、建材、水利等各部門得到廣泛的應用。
20世紀70年代,世界性能源危機,環境污染以及礦物資源的枯竭等強烈地激發了粉煤灰利用的研究和開發,多次召開國際性粉煤灰會議,研究工作日趨深入,應用方面也有了長足的進步。粉煤灰成為國際市場上引人注目的資源豐富、價格低廉,興利除害的新興建材原料和化工產品的原料,受到人們的青睞。目前,對粉煤灰的研究工作大都由理論研究轉向應用研究,特別是著重要資源化研究和開發利用。利用粉煤灰生產的產品在不斷增加,技術在不斷更新。國內外粉煤灰綜合利用工作與過去相比較,發生了重大的變化,主要表現為:粉煤灰治理的指導思想已從過去的單純環境角度轉變為綜合治理、資源化利用;粉煤灰綜合利用的途徑以從過去的路基、填方、混凝土摻和料、土壤改造等方面的應用外,發展到目前的在水泥原料、水泥混合材、大型水利樞紐工程、泵送混凝土、大體積混凝土製品、高級填料等高級化利用途徑。
粉煤灰的形成、組成、結構、性質及存在形態
粉煤灰、沙子、水泥構成了生產彩瓦的主要成分
一、粉煤灰的形成
第一階段,粉煤在開始燃燒時,其中氣化溫度低的揮發分,首先自礦物質與固體碳連接的縫隙間不斷逸出,使粉煤灰變成多孔型炭粒。此時的煤灰,顆粒狀態基本保持原煤粉的不規則碎屑狀,但因多孔型性,使其表面積更大。
第二階段,伴隨著多孔性炭粒中的有機質完全燃燒和溫度的升高,其中的礦物質也將脫水、分解、氧化變成無機氧化物,此時的煤灰顆粒變成多孔玻璃體,盡管其形態大體上仍維持與多孔炭粒相同,但比表面積明顯地小於多孔炭粒。
第三階段,隨著燃燒的進行,多孔玻璃體逐漸融收縮而形成顆粒,其孔隙率不斷降低,圓度不斷提高,粒徑不斷變小,最終由多孔玻璃轉變為一密度較高、粒徑較小的密實球體,顆粒比表面積下降為最小。不同粒度和密度的灰粒具有顯著的化學和礦物學方面的特徵差別,小顆粒一般比大顆粒更具玻璃性和化學活性。
最後形成的粉煤灰(其中80%~90%為飛灰,10%~20%為爐底灰)是外觀相似,顆粒教細而不均勻的復雜多變的多相物質。飛灰是進入煙道氣灰塵中最細的部分,爐底灰是分離出來的比較粗的顆粒,或是爐渣。這些東西有足夠的重量,燃燒帶跑到爐子的底部。
二、粉煤灰的組成
1、粉煤灰的化學組成 我國火電廠粉煤灰的主要氧化物組成為:SiO2、AL2O3、FeO、Fe2O3、CaO、TiO2、 MgO 、K2O、 Na2O、SO3、MnO等,此外還有P2O5等。其中氧化硅、氧化鈦來自黏土,岩頁;氧化鐵主要來自黃鐵礦;氧化鎂和氧化鈣來自與其相應的碳酸鹽和硫酸鹽。
粉煤灰的元素組成(質量分數)為:O 47.83%,Si 11.48%~31.14%,A1 6.40%~22.91%,Fe 1.90%~18.51%, Ca 0.30%~25.10%,K 0.22%~3.10%,Mg 0.05%~1.92%,Ti 0.40%~1.80%,S 0.03%~4.75%,Na 0.05%~1.40%,P 0.00%~0.90%,C1 0.00%~0.12%,其他0.50%~29.12%。
由於煤的灰量變化范圍很廣,而且這一變化不僅發生在來自世界各地或同一地區不同煤層的煤中,甚至也發生在同一煤礦不同的部分的煤中。因此,構成粉煤灰的具體化學成分含量,也就因煤的產地、煤的燃燒方式和程度等不同而有所不同。其主要化學組成見下表。
我國電廠粉煤灰化學組成 %
成分 SiO2 A12O3 Fe2O3 CaO MgO SO3 Na2O K2O 燒失量
范圍 34.30~65.76 14.59~40.12 1.50~
16.22 0.44~
16.80 0.20~
3.72 0.00~
6.00 0.10~
4.23 0.02~
2.14 0.63~
29.97
均值 50.8 28.1 6.2 3.7 1.2 0.8 1.2 0.6 7.9
粉煤灰的活性主要來自活性SiO2(玻璃體SiO2)和活性A12O3 (玻璃體A12O3 )在一定鹼性條件下的水化作用。因此,粉煤灰中活性SiO2、活性A12O3和f-CaO(游離氧化鈣)都是活性的的有利成分,硫在粉煤灰中一部分以可溶性石膏(CaSO4)的形式存在,它對粉煤灰早期強度的發揮有一定作用,因此粉煤灰中的硫對粉煤灰活性也是有利組成。粉煤灰中的鈣含量在3%左右,它對膠凝體的形成是有利的。國外把CaO含量超過10%的粉煤灰稱為C類灰,而低與10%的粉煤灰稱為F類灰。C類灰其本身具有一定的水硬性,可作水泥混合材,F類灰常作混凝土摻和料,它比C類灰使用時的水化熱要低。
粉煤灰中少量的MgO、Na2O、K2O等生成較多玻璃體,在水化反應中會促進鹼硅反應。但MgO含量過高時,對安定性帶來不利影響。
粉煤灰中的未燃炭粒疏鬆多孔,是一種惰性物質不僅對粉煤灰的活性有害,而且對粉煤灰的壓實也不利。過量的Fe2O3對粉煤灰的活性也不利。
2、粉煤灰的礦物組成
由於煤粉各顆粒間的化學成分並不完全一致,因此燃燒過程中形成的粉煤灰在排出的冷卻過程中,形成了不同的物相。比如:氧化硅及氧化鋁含量較高的玻璃珠在鐵礦,另外,粉煤灰中晶體礦物的含量與粉煤灰冷卻速度有關。一般來說,冷卻速度較快時,玻璃體含量較多:反之,玻璃體容易析晶。可見,從物相上講,粉煤灰是晶體礦物和非晶體礦物的混合物。其礦物組成的波動范圍較大。一般晶體礦物為石英、莫來石、磁鐵礦、氧化鎂、生石灰及無水石膏等,非晶體礦物為玻璃體、無定形碳和次生褐鐵礦,其中玻璃體含量佔50%以上。
3、粉煤灰的結構
粉煤灰的結構是在煤粉燃燒和排出過程中形成的,比較復雜。在顯微鏡下觀察,粉煤灰是晶體、玻璃體及少量未燃炭組成的一個復合結構的混合體。混合體中這三者的比例隨著煤燃燒所選用的技術及操作手法不同而不同。其中結晶體包括石英、莫來石、磁鐵礦等;玻璃體包括光滑的球體形玻璃體粒子、形狀不規則孔隙少的小顆粒、疏鬆多孔且形狀不規則的玻璃體球等;未燃炭多呈疏鬆多孔形式。
4、粉煤灰的性質
(1)物理性質
粉煤灰的物理性質包括密度、堆積密度、細度、比表面積、需水量等,這些性質是化學成分及礦物組成的宏觀反映。由於粉煤灰的組成波動范圍很大,這就決定了其物理性質的差異也很大。
粉煤灰的基本物理性質見表。
粉煤灰的基本物理特性
項 目 范 圍 均 值
密度/(g/cm3) 1.9~2.9 2.1
堆積密度/(g/cm3) 0.531~1.261 0.780
比表面積(cm2/g) 氮吸附法 800~19500 3400
透氣法 1180~6530 3300
原灰標准稠度/% 27.3~66.7 48.0
需水量/% 89~130 106
28d抗壓強度比/% 37~85 66
粉煤灰的物理性質中,細度和粒度是比較重要的項目。它直接影響著粉煤灰的其他性質,粉煤灰越細,細粉占的比重越大,其活性也越大。粉煤灰的細度影響早期水化反應,而化學成分影響後期的反應。
(2)化學性質
粉煤灰是一種人工火山灰質混合材料,它本身略有或沒有水硬膠凝性能,但當以粉狀及水存在時,能在常溫,特別是在水熱處理(蒸汽養護)條件下,與氫氧化鈣或其他鹼土金屬氫氧化物發生化學反應,生成具有水硬膠凝性能的化合物,成為一種增加強度和耐久性的材料。
5、粉煤灰的存在形態
粉煤灰是以顆粒形態存在的,且這些顆粒的礦物組成、粒徑大小、形態各不相同。人們通常將其形狀分為珠狀顆粒和渣狀顆粒兩大類。根據北京科技大學宋存義等用掃描式電子顯微鏡的觀察表明,粉煤灰由多種粒子構成,其中珠狀顆粒包括空心玻珠(漂珠)、厚壁及實心微珠(沉珠)、鐵珠(磁珠)、炭粒、不規則玻璃體和多孔玻璃體等五大品種。其中不規則玻璃體是粉煤灰中較多的顆粒之一,大多是由似球和非球形的各種渾圓度不同的粘連體顆粒組成。有的粘連體斷開後,其外觀和性質與各種玻璃球形體相同,其化學成分則略有不同。多孔玻璃體形似蜂窩,具有較大的表面積,易黏附其他碎屑,密度較小,熔點比其他微珠偏低,其顏色由乳白至灰色不等。在掃描式電子顯微鏡下可以比較容易地觀察到不規則玻璃體的存在。渣狀顆粒包括海綿狀玻璃渣粒、炭粒、鈍角顆粒、碎屑和粘聚顆粒等五大品種。正是由於這些顆粒各自組成上的變化,組合上的比例不同,才直接影響到粉煤灰質量的優劣。
從煤燃燒後的煙氣中收捕下來的細灰稱為粉煤灰,粉煤灰是燃煤電廠排出的主要固體廢物。
粉煤灰的燃燒過程:煤粉在爐膛中呈懸浮狀態燃燒,燃煤中的絕大部分可燃物都能在爐內燒盡,而煤粉中的不燃物(主要為灰分)大量混雜在高溫煙氣中。這些不燃物因受到高溫作用而部分熔融,同時由於其表面張力的作用,形成大量細小的球形顆粒。在鍋爐尾部引風機的抽氣作用下,含有大量灰分的煙氣流向爐尾。隨著煙氣溫度的降低,一部分熔融的細粒因受到一定程度的急冷呈玻璃體狀態,從而具有較高的潛在活性。在引風機將煙氣排入大氣之前,上述這些細小的球形顆粒,經過除塵器,被分離、收集,即為粉煤灰。
粉煤灰是我國當前排量較大的工業廢渣之一,現階段我國年排渣量已達3000萬t。隨著電力工業的發展,燃煤電廠的粉煤灰排放量逐年增加。大量的粉煤灰不加處理,就會產生揚塵,污染大氣;若排入水系會造成河流淤塞,而其中的有毒化學物質還會對人體和生物造成危害。因此,粉煤灰的處理和利用問題引起人們廣泛的注意。
粉煤灰使用的優點
在混凝土中摻加粉煤灰節約了大量的水泥和細骨料;減少了用水量;改善了混凝土拌和物的和易性;增強混凝土的可泵性;減少了混凝土的徐變;減少水化熱、熱能膨脹性;提高混凝土抗滲能力;增加混凝土地修飾性。
粉煤灰的用途
國標一級:採用優質粉煤灰和高效減水劑復合技術生產高標號混凝土的現代混凝土新技術正在全國迅速發展。
國標二級:優質粉煤灰特別適用於配製泵送混凝土、大體積混凝土、抗滲結構混凝土、抗硫酸鹽混凝土和抗軟水侵蝕混凝土及地下、水下工程混凝土、壓漿混凝土和碾壓混凝土。
國標三級:粉煤灰混凝土具有和易性好、可泵性強、終飾性改善、抗沖擊能力提高、抗凍性增強等優點。
粉煤灰是煤粉經高溫燃燒後形成的一種似火山灰質混合材料。它是燃燒煤的發電廠將煤磨成100微米以下的煤粉,用預熱空氣噴入爐膛成懸浮狀態燃燒,產生混雜有大量不燃物的高溫煙氣,經集塵裝置捕集就得到了粉煤灰。粉煤灰的化學組成與粘土質相似,主要成分為二氧化硅、三氧化二鋁、三氧化二鐵、氧化鈣和未燃盡碳。目前,粉煤灰主要用來生產粉煤灰水泥、粉煤灰磚、粉煤灰硅酸鹽砌塊、粉煤灰加氣混凝土及其他建築材料,還可用作農業肥料和土壤改良劑,回收工業原料和作環境材料。粉煤灰在水泥工業和混凝土工程中的應用:粉煤灰代替粘土原料生產水泥,由硅酸鹽水泥熟料和粉煤灰加入適量石膏磨細製成的水硬膠凝材料,水泥工業採用粉煤灰配料可利用其中的未燃盡炭;粉煤灰作水泥混合材;粉煤灰生產低溫合成水泥,生產原理是將配合料先蒸汽養護生成水化物,然後經脫水和低溫固相反應形成水泥礦物;粉煤灰製作無熟料水泥,包括石灰粉煤灰水泥和純粉煤灰水泥,石灰粉煤灰水泥是將乾燥的粉煤灰摻入10%—30%的生石灰或消石灰和少量石膏混合粉磨,或分別磨細後再混合均勻製成的水硬性膠凝材料;粉煤灰作砂漿或混凝土的摻和料,在混凝土中摻加粉煤灰代替部分水泥或細骨料,不僅能降低成本,而且能提高混凝土的和易性、提高不透水、氣性、抗硫酸鹽性能和耐化學侵蝕性能、降低水化熱、改善混凝土的耐高溫性能、減輕顆粒分離和析水現象、減少混凝土的收縮和開裂以及抑制雜散電流對混凝土中鋼筋的腐蝕。粉煤灰在建築製品中的應用:蒸制粉煤灰磚,以電廠粉煤灰和生石灰或其他鹼性激發劑為主要原料,也可摻入適量的石膏,並加入一定量的煤渣或水淬礦渣等骨料,經過加工、攪拌、消化、輪碾、壓製成型、常壓或高壓蒸汽養護後而形成的一種牆體材料;燒結粉煤灰磚,以粉煤灰、粘土及其他工業廢料為原料,經原料加工、攪拌、成型、乾燥、培燒製成磚;蒸壓生產泡沫粉煤灰保溫磚,以粉煤灰為主要原料,加入一定量的石灰和泡沫劑,經過配料、攪拌、燒注成型和蒸壓而成的一種新型保溫磚;粉煤灰硅酸鹽砌塊,以粉煤灰、石灰、石膏為膠凝材料,煤渣、高爐礦渣等為骨料,加水攪拌、振動成型、蒸汽養護而成的牆體材料;粉煤灰加氣混凝土,以粉煤灰為原料,適量加入生石灰、水泥、石膏及鋁粉,加水攪拌呈漿,注入模具蒸養而成的一種多孔輕質建築材料;粉煤灰陶粒,以粉煤灰為主要原料,摻入少量粘結劑和固體燃料,經混合、成球、高溫培燒而制的一種人造輕質骨料;粉煤灰輕質耐熱保溫磚,是用粉煤灰、燒石、軟質土及木屑進行配料而成,具有保溫效率高,耐火度搞,熱導率小,能減輕爐牆厚度、縮短燒成時間、降低燃料消耗、提高熱效率、降低成本。粉煤灰作農業肥料和土壤改良劑:粉煤灰具有良好的物理化學性質,能廣泛應用於改造重粘土、生土、酸性土和鹽鹼土,彌補其酸瘦板粘的缺陷,粉煤灰中含有大量枸溶性硅鈣鎂磷等農作物所必需的營養元素,故可作農業肥料用。回收工業原料:回收煤炭資源,利用浮選法在含煤炭粉煤灰的灰漿水中加入浮選葯劑,然後採用氣浮技術,使煤粒粘附於氣泡上浮與灰渣分離;回收金屬物質粉煤灰中含有Fe2O3、Al2O3、和大量稀有金屬;分選空心微珠,空心微珠具有質量小、高強度、耐高溫和絕緣性好,可以用於塑料的理想填料,用於輕質耐火材料和高效保溫材料,用於石油化學工業,用於軍工領域,坦克剎車。作環保材料:利用粉煤灰可製造分子篩、絮凝劑和吸附材料等環保材料;粉煤灰還可用於處理含氟廢水、電鍍廢水與含重金屬例子廢水和含油廢水,粉煤灰中含有的Al2O3、CaO等活性組分,能與氟生產配合物或生產對氟有絮凝作用的膠體離子,還含有沸石、莫來石、炭粒和硅膠等,具有無機離子交換特性和吸附脫色作用。
「粉煤灰」在漢英詞典中的解釋(來源:靈格斯詞霸):
1、 pulverized fuel ash
2、 fly ash
(一)粉煤灰檢驗規定
1)編號和取樣
(1)編號
以連續供應的200t相同等級、相同種類的粉煤灰為一編號。不足200t按一個編號論,粉煤灰質量按干灰(含水量小於1%)的質量計算。
(2)取樣
每一個編號為一取樣單位,當散裝粉煤灰運輸工具的容量超過該廠規定出廠編號噸數時,允許該編號的數量超過取樣規定噸數。
取樣方法按GB12753進行。取樣應有代表性,可連續取,也可從10個以上不同部位去等量樣品,總量至少3份。
拌制混凝土和沙漿用粉煤灰,必要時,買方可對粉煤灰的技術要求進行隨機抽樣檢查。
2)出廠檢驗
(1) 拌制混凝土和沙漿用粉煤灰,出廠檢驗項目為國標全部技術要求。
(2) 水泥活性混凝土材料用粉煤灰,出廠檢驗項目為國標中燒失量、含水量、三氧化硫、游離氧化鈣、安定性。
3)型式檢驗
(1) 拌制混凝土和沙漿用粉煤灰型式檢驗項目為國標全部技術要求。
(2) 水泥活性混凝土材料用粉煤灰型式檢驗項目為國標全部技術要求。
(3) 有下列情況之一應進行型式檢驗:
———原料、工藝有較大改變,可能影響產品性能時;
———正常生產時,每半年檢驗一次(放射性除外);
———產品長期停產後,恢復生產時;
———出廠檢驗結果與上次型式檢驗有較大差別時。
4)判定規則
(1)拌制混凝土和沙漿或水泥活性混凝土材料用粉煤灰,試驗結果符合國標全部技術要求時為等級品。若其中任何一項不符合要求,允許在同一編號中重新加倍取樣進行全部項目的復檢,以復檢結果判定,復檢不合格可降級處理。凡低於本國家標准最低級別要求的為不合格品。
(二)標志和包裝
1) 標志
袋裝粉煤灰的包裝上應標明產品名稱(F類粉煤灰或C類粉煤灰)、等級、分選或磨細、凈含量、批號、執行標准號、生產廠名和地址、包裝日期。
2) 包裝
粉煤灰可以袋裝或散裝。袋裝每袋凈含量為25kg或40kg,每袋凈含量不得少於標志質量的98%。其他包裝規格由買賣雙方協商確定。
(三)運輸和儲存
粉煤灰在運輸和儲存時不得受潮、混入雜物,同時應防止污染環境。
6. 煤渣發黃是怎麼回事
煤渣發黃可能是發生了化學反應,煤渣工業固體廢物的一種,火力發電廠、工業和民用鍋爐及其他設備燃煤排出的廢渣,又稱爐渣。主要成分是二氧化硅、氧化鋁、氧化鐵、氧化鈣、氧化鎂等。根據成分的不同,可用於製造水泥、磚和耐火材料等。有些可用於製取氧化鋁或提煉鎵、鍺等稀有金屬。